Stainless angle steel; high quality angle steel
- Loading Port:
- China main port
- Payment Terms:
- TT or LC
- Min Order Qty:
- 50 m.t.
- Supply Capability:
- 10000 m.t./month
OKorder Service Pledge
OKorder Financial Service
You Might Also Like
Stainless angle steel; high quality angle steelGeneral Informaiton of Stainless angle steel; high quality angle steel
1. Grade: SS200, 300,400 series
2. Size: 25×25×3 mm-100×100×10mm
3. Process: HRAP
4. Length: 2-6m
5. Shape: Equal
6. Delivery: within 20 days
7. MOQ: 1 ton
8. Certificate: ISO 9001:2008, SGS
9. Package: Standard Export Packing, or put into wooden boxes according to your requirement
10. Application: Construction, Marine, Industry etc.
Specification of Stainless Steel Angle Bar
Name | Stainless Steel Angles | |||||
Standard | ASTM A554, A312, A249, A269 and A270 | |||||
Material Grade | 304,316,201,202, 316L,430 | |||||
Length | 6m or as customers' request | |||||
Tolerance | a) Thickness: +/-0. 15mm | |||||
b) Length: +/-4. 5mm - 0mm | ||||||
Surface | 180G, 320G, 400G Satin / Hairline(Matt Finish, Brush, Dull Finish) 400G, 500G, 600G or 800G Mirror finish | |||||
Application | Decoration construction, upholstery, industry instruments | |||||
Test | Squash test, Extended test, Water pressure test, Crystal rot test, Heat treatment, NDT | |||||
Chemical Composition of Material | Composition Material | 201 | 202 | 304 | 316 | 430 |
C | ≤0.15 | ≤0.15 | ≤0.08 | ≤0.08 | ≤0.12 | |
Si | ≤1.00 | ≤1.00 | ≤1.00 | ≤1.00 | ≤1.00 | |
Mn | 5.5-7.5 | 7.5-10 | ≤2.00 | ≤2.00 | ≤1.00 | |
P | ≤0.06 | ≤0.06 | ≤0.045 | ≤0.045 | ≤0.040 | |
S | ≤0.03 | ≤0.03 | ≤0.030 | ≤0.030 | ≤0.030 | |
Cr | 16-18 | 17-19 | 18-20 | 16-18 | 16-18 | |
Ni | 3.5-5.5 | 4-6 | 8-10.5 | 10-14 | ||
Mo | 2.0-3.0 | |||||
Mechanical Property | Material Item | 201 | 202 | 304 | 316 | |
Tensile Strength | ≥535 | ≥520 | ≥520 | ≥520 | ||
Yield Strength | ≥245 | ≥205 | ≥205 | ≥205 | ||
Extension | ≥30% | ≥30% | ≥35% | ≥35% | ||
Hardness (HV) | <253 | <253 | <200 | <200 |
Pictures of Stainless angle steel; high quality angle steel
- Q: Can steel angles be used for architectural detailing?
- Indeed, architectural detailing can make use of steel angles. These versatile structural elements find application in diverse architectural scenarios. They serve to provide stability and support to structures, fulfilling framing, bracing, and reinforcing purposes. Examples of steel angle implementation can be observed in architectural features like window frames, door frames, staircases, and handrails, among others. Their inherent strength and durability render them fitting for both interior and exterior architectural designs. Furthermore, steel angles can be effortlessly tailored and manufactured to meet precise design specifications, empowering architects to conceive distinctive and visually appealing architectural details.
- Q: What are the standard lengths for steel angles?
- The standard lengths for steel angles vary depending on the manufacturer and the specific requirements of a project. However, there are some commonly available standard lengths for steel angles. These include 20 feet, 30 feet, and 40 feet. It is important to note that steel angles can also be cut to custom lengths based on the needs of a particular application.
- Q: Can steel angles be used for support structures in stadiums or arenas?
- Yes, steel angles can be used for support structures in stadiums or arenas. Steel angles are commonly used in construction due to their high strength and load-bearing capabilities. They provide structural support and stability, making them suitable for various applications, including support structures in stadiums or arenas.
- Q: How do you determine the axial capacity of a steel angle?
- In order to ascertain the axial capacity of a steel angle, one must consider several factors. First and foremost, it is crucial to determine the yield strength of the steel angle. Typically, this information is provided by the manufacturer and can be found in material specifications. The yield strength denotes the maximum stress that the steel angle can endure without experiencing permanent deformation. Following that, the cross-sectional area of the steel angle must be computed. This can be achieved by measuring the angle's dimensions, such as the thickness and the length of its legs. The cross-sectional area is then obtained by multiplying the thickness by the sum of the two leg lengths. Once the cross-sectional area is ascertained, the axial capacity can be calculated by multiplying the yield strength by the cross-sectional area. This will determine the maximum load that the steel angle can bear in a purely axial direction without failure. It is important to bear in mind that there are additional factors that can impact the axial capacity of a steel angle, including the presence of holes or notches, the slenderness ratio, and the loading conditions. Therefore, it is advisable to consult relevant design codes, standards, or engineering handbooks for more comprehensive guidance and to account for these supplementary factors.
- Q: How do you determine the strength of a steel angle?
- The strength of a steel angle can be determined by considering its dimensions, material properties, and the load it will be subjected to. Factors such as the thickness and width of the angle, as well as the type and grade of steel used, play a crucial role in its strength. Additionally, analyzing the applied load, whether it's a tensile, compressive, or bending force, helps assess the angle's strength based on its ability to withstand and distribute the load without failure. Various mathematical calculations and engineering standards can be used to determine the strength of a steel angle in specific applications.
- Q: What are the cost considerations for using steel angles?
- There are several cost considerations to take into account when using steel angles. Firstly, the cost of the steel material itself can vary depending on the grade and quality of the steel. Higher-grade steel angles tend to be more expensive, but they offer better strength and durability. Additionally, the length and size of the steel angles will affect the overall cost. Longer and larger angles will generally be more expensive due to the increased amount of steel required. It is important to carefully assess the required dimensions to avoid unnecessary costs. Another cost consideration is the fabrication and finishing of the steel angles. If custom fabrication or special finishing techniques are required, such as welding, cutting, or painting, these processes can add to the overall cost. It is essential to factor in these additional expenses when budgeting for the use of steel angles. Transportation costs should also be considered. Steel angles are heavy and bulky, which can lead to higher shipping costs, especially for long distances. It is crucial to account for these expenses, particularly if the project requires a significant quantity of steel angles. Lastly, it is important to consider the long-term costs associated with steel angles. While steel is durable and long-lasting, it may require maintenance or protective coatings to prevent corrosion over time. These maintenance costs should be factored into the overall budget to ensure the longevity and reliability of the steel angles. Overall, the cost considerations for using steel angles include the price of the steel material, the dimensions and size of the angles, fabrication and finishing processes, transportation expenses, and long-term maintenance costs. Evaluating and planning for these factors will help ensure a cost-effective and successful use of steel angles in various applications.
- Q: What are the different methods of surface preparation for steel angles?
- To ensure proper adhesion of coatings, improve corrosion resistance, and enhance overall durability, there are various methods available for preparing the surface of steel angles. Some commonly used methods include the following: 1. Mechanical Cleaning: Physical tools like wire brushes, sandpaper, or abrasive discs are used to physically eliminate dirt, rust, mill scale, and other contaminants from the steel angle's surface. While this method is simple and cost-effective, it may not be effective for heavy corrosion or stubborn deposits. 2. Chemical Cleaning: Acid-based solutions or pickling pastes are applied to dissolve rust, scale, and other contaminants on the surface. After a specific period of time, the solution is rinsed off. Chemical cleaning is highly effective for removing stubborn deposits but requires careful handling and proper disposal of the chemicals. 3. Power Tool Cleaning: Power tools such as grinders, sanders, or needle guns with abrasive attachments are utilized to remove rust, scale, and contaminants. This method is faster and more efficient than manual mechanical cleaning, making it suitable for large-scale surface preparation. 4. Blast Cleaning: Also known as abrasive blasting, this method involves projecting abrasive materials (e.g., sand, steel grit, or glass beads) onto the steel surface at high velocity using compressed air or centrifugal force. Blast cleaning effectively removes rust, scale, and contaminants, resulting in a clean and profiled surface. While widely used in industrial applications, it requires proper safety measures to protect workers from exposure to abrasive materials. 5. Flame Cleaning: By directing a high-temperature flame onto the steel surface, flame cleaning removes contaminants. The intense heat burns off organic materials and evaporates moisture, leaving a clean surface. This method is particularly effective for removing oil, grease, and paint residues. 6. Conversion Coating: A chemical solution is applied to the steel surface, reacting with the metal to form a thin protective layer. This layer enhances the adhesion of subsequent coatings and provides additional corrosion resistance. Phosphating, chromating, and passivation are common types of conversion coatings. It's important to consider factors such as the extent of corrosion, desired coating system, and environmental conditions when selecting the most suitable surface preparation method for steel angles. Consulting experts or referring to industry standards can assist in determining the appropriate method for a specific application.
- Q: How do you determine the required number of fasteners for a steel angle connection?
- To determine the required number of fasteners for a steel angle connection, several factors need to be considered. These include the load being applied, the size and thickness of the angle, the type and strength of the fasteners being used, and any applicable building codes or engineering standards. Typically, calculations or guidelines provided by structural engineers or industry standards are used to determine the minimum number and spacing of fasteners needed to ensure the connection is strong and safe.
- Q: What is the typical lead time for steel angle orders?
- The typical lead time for steel angle orders can vary depending on the supplier and the specific order requirements. However, it is common for lead times to range from a few days to a couple of weeks.
- Q: Are steel angles available in custom sizes?
- Custom sizes of steel angles are indeed available. In the construction and manufacturing sectors, steel angles are widely used and are available in a variety of standard sizes. However, if the standard sizes do not meet the specific needs of a project, it is possible to manufacture custom sizes. This provides greater flexibility when designing and constructing structures or products. Custom-sized steel angles can be created by either cutting and reshaping standard angles or by manufacturing them from scratch to match the desired dimensions.
Send your message to us
Stainless angle steel; high quality angle steel
- Loading Port:
- China main port
- Payment Terms:
- TT or LC
- Min Order Qty:
- 50 m.t.
- Supply Capability:
- 10000 m.t./month
OKorder Service Pledge
OKorder Financial Service
Similar products
Hot products
Hot Searches
Related keywords