• Angle steel high quality System 1
  • Angle steel high quality System 2
  • Angle steel high quality System 3
Angle steel high quality

Angle steel high quality

Ref Price:
get latest price
Loading Port:
China Main Port
Payment Terms:
TT OR LC
Min Order Qty:
-
Supply Capability:
-

Add to My Favorites

Follow us:


OKorder Service Pledge

Quality Product, Order Online Tracking, Timely Delivery

OKorder Financial Service

Credit Rating, Credit Services, Credit Purchasing

Product Description:

Stainless Steel Angles  

1.Grade: SS200,300,400 series

2.Size: 25×25×3 mm-100×100×10mm

3.Process: HRAP

4. Length: 2-6m

5. Shape: Equal

6. Delivery: within 20 days

7. MOQ: 1 ton

8. Certificate: ISO 9001:2008, SGS

9. Package:Standard Export Packing, or put into wooden boxes according to your  

requirement

10. Application: Construction, Marine, Industry and so on

Name

Stainless Steel Angles

Standard

ASTM A554, A312, A249, A269 and A270

Material Grade

304,316,201,202, 316L,430

Length

6m or as customers' request

Tolerance

a) thickness: +/-0. 15mm

b) Length:+/-4. 5mm - 0mm

Surface

180G, 320G, 400G Satin / Hairline(Matt Finish, Brush, Dull Finish)

400G, 500G, 600G or 800G Mirror finish

Application

Decoration construction, upholstery, industry instruments

Test

Squash test, Extended test, Water pressure test, Crystal rot test, Heat treatment, NDT

Chemical Composition

of Material

Composition

 Material

201

202

304

316L

430

C

≤0.15

≤0.15

≤0.08

≤0.08

≤0.12

Si

≤1.00

≤1.00

≤1.00

≤1.00

≤1.00

Mn

5.5-7.5

7.5-10

≤2.00

≤2.00

≤1.00

P

≤0.06

≤0.06

≤0.045

≤0.045

≤0.040

S

≤0.03

≤0.03

≤0.030

≤0.030

≤0.030

Cr

16-18

17-19

18-20

16-18

16-18

Ni

3.5-5.5

4-6

8-10.5

10-14

Mo

2.0-3.0

Mechanical Property

Material Item    

201

202

304

316L

Tensile Strength

≥535

≥520

≥520

≥520

Yield Strength

≥245

≥205

≥205

≥205

Extension

≥30%

≥30%

≥35%

≥35%

Hardness (HV)

<253

<253

<200

<200

Q: Can steel angles be used for framing or supporting exterior cladding systems?
Yes, steel angles can be used for framing or supporting exterior cladding systems. Steel angles are commonly used in construction as they provide structural support and stability. When used for framing or supporting exterior cladding systems, steel angles offer durability and strength, ensuring the stability and longevity of the cladding. They are often used to create a framework or support structure for attaching the cladding materials, such as siding or panels, to the building's exterior. Steel angles can be easily customized and fabricated to fit specific design requirements, making them a versatile choice for framing or supporting exterior cladding systems.
Q: Are steel angles suitable for supporting rooftop equipment?
Indeed, rooftop equipment can be supported by steel angles. In the realm of construction and engineering projects, steel angles are widely employed due to their robustness and endurance. They furnish a dependable and firm framework for various rooftop equipment, encompassing HVAC units, solar panels, and communication antennas. Facilitating effortless fabrication and installation, steel angles can be tailored to meet precise load prerequisites, thereby presenting an optimal option for sustaining weighty machinery atop roofs. Furthermore, their resistance to corrosion guarantees prolonged efficacy and minimal upkeep requirements.
Q: Can steel angles be used in marine environments?
Yes, steel angles can be used in marine environments. Steel angles are commonly used in the construction industry due to their strength and versatility. In marine environments, where corrosion and exposure to saltwater can be a concern, it is important to use corrosion-resistant materials. Stainless steel angles or galvanized steel angles are often used in marine applications as they offer excellent resistance to corrosion. These materials have protective coatings or alloys that prevent rusting and degradation, ensuring their durability and longevity in marine environments. Additionally, steel angles can be designed and fabricated to meet specific requirements and regulations for marine structures such as shipbuilding, offshore platforms, and marine piers.
Q: Can steel angles be used for mezzanine floors?
Yes, steel angles can be used for mezzanine floors. Steel angles are commonly used as structural components in construction, including for mezzanine floors. They provide stability and support to the structure, allowing for the creation of additional floor space. Steel angles are strong and durable, making them suitable for supporting heavy loads and ensuring the safety of the mezzanine floor. Additionally, steel angles can be easily fabricated and installed, making them a cost-effective choice for constructing mezzanine floors.
Q: How do steel angles perform in high-pressure applications?
Steel angles are widely used in high-pressure applications due to their excellent performance under extreme conditions. The structural design and composition of steel angles provide them with exceptional strength and durability, making them capable of withstanding high pressure without deformation or failure. The unique shape of steel angles, with their L-shaped cross-section, enhances their load-bearing capacity and resistance to bending. This makes them ideal for applications where high-pressure forces are exerted, such as in the construction of pressure vessels, pipelines, and hydraulic systems. Steel angles are typically manufactured from high-strength carbon steel, which possesses inherent toughness and resilience. This material composition enables steel angles to maintain their structural integrity even when subjected to the intense forces associated with high-pressure environments. Furthermore, the versatility of steel angles allows for customization and adaptation to specific needs. They can be fabricated in different sizes, thicknesses, and lengths to accommodate varying pressure requirements. This flexibility ensures that steel angles can be tailored to specific applications, further enhancing their performance in high-pressure scenarios. In addition to their mechanical properties, steel angles also exhibit excellent corrosion resistance. This is crucial in high-pressure applications, as the presence of corrosive substances can deteriorate the structural integrity of components. The inherent corrosion resistance of steel angles prevents degradation over time, ensuring their long-term reliability and performance. Overall, steel angles are highly reliable and effective in high-pressure applications. Their exceptional strength, versatility, and corrosion resistance make them a preferred choice in industries where pressure containment is critical. By utilizing steel angles, operators can trust that their systems will perform reliably and safely under extreme pressure conditions.
Q: What are the different standards and specifications for steel angles?
Steel angles have various standards and specifications that dictate their physical and mechanical properties. Some commonly used standards are as follows: 1. Carbon structural steel angles are covered by ASTM A36/A36M. This standard provides details on the chemical composition, mechanical properties, and other requirements for carbon steel angles. 2. High-strength carbon-manganese steel angles are specified under ASTM A529/A529M. This standard outlines the composition, mechanical properties, and other specifications for these angles. 3. ASTM A572/A572M covers high-strength low-alloy columbium-vanadium structural steel angles. It provides information on the chemical composition, mechanical properties, and other requirements for these angles. 4. High-strength low-alloy structural steel angles with improved atmospheric corrosion resistance are specified in ASTM A588/A588M. This standard details the chemical composition, mechanical properties, and other characteristics for these angles. 5. For use in bridges, carbon and high-strength low-alloy structural steel angles are covered by ASTM A709/A709M. This standard provides information on the chemical composition, mechanical properties, and other specifications for these angles. 6. EN 10056 is a European standard that specifies tolerances on shape, dimensions, and mass of hot-rolled structural steel equal and unequal angles. It also provides information on the mechanical properties and other requirements for these angles. 7. JIS G3192 is a Japanese standard that specifies dimensions, mass, and permissible variations of hot-rolled steel sections, including angles. It outlines the mechanical properties and other specifications for these angles. These examples demonstrate the diversity of standards and specifications for steel angles. It is crucial to refer to the relevant standard for your specific project or application to ensure that the steel angles meet the required criteria.
Q: How do steel angles contribute to the sustainability of a city?
Steel angles contribute to the sustainability of a city in several ways. Firstly, steel angles are a crucial component in the construction industry, used in the fabrication of buildings, bridges, and other infrastructure. Steel is known for its strength, durability, and resistance to external factors such as corrosion and fire. By using steel angles in construction projects, cities can ensure the longevity and safety of their structures, reducing the need for frequent maintenance or replacement. This leads to a significant reduction in the consumption of resources over time, making cities more sustainable. Additionally, steel angles offer design flexibility, allowing architects and engineers to create innovative and efficient structures. Their versatility enables the construction of sustainable buildings that incorporate features such as energy-efficient designs, natural lighting, and effective insulation. By utilizing steel angles in the construction process, cities can promote sustainable practices and reduce energy consumption, contributing to a more sustainable urban environment. Furthermore, steel is a highly recyclable material, with a recycling rate of around 90%. By using steel angles in construction, cities can contribute to a circular economy by promoting the recycling and reuse of steel products. This reduces the demand for raw materials and minimizes waste, thereby reducing the environmental impact of construction projects. The use of recycled steel also helps to conserve energy and reduce greenhouse gas emissions associated with the production of new steel. In conclusion, steel angles play a vital role in the sustainability of a city by providing durable and long-lasting structures, enabling energy-efficient designs, and promoting the recycling and reuse of materials. By incorporating steel angles in construction projects, cities can create sustainable infrastructure that contributes to the overall well-being of the environment and the community.
Q: Can steel angles be used for equipment racks or shelving?
Equipment racks or shelving can indeed utilize steel angles. The robustness, endurance, and adaptability of steel angles make them widely employed in construction and fabrication. These angles offer structural reinforcement and steadiness, rendering them perfect for crafting resilient equipment racks or shelving units. By welding or bolting steel angles together, a sturdy framework can be created to hold an assortment of items, including weighty machinery, tools, or storage containers. Moreover, the flexible design of steel angles permits effortless customization and adjustment of shelf heights, making them suitable for accommodating diverse sizes and types of objects. In conclusion, steel angles are a dependable choice for constructing equipment racks or shelving systems that necessitate strength, stability, and longevity.
Q: Can steel angles be used for load-bearing walls?
No, steel angles are not typically used for load-bearing walls. Load-bearing walls require structural support and are typically constructed using materials such as reinforced concrete or steel beams/columns. Steel angles may be used for non-load-bearing purposes such as framing or decorative purposes.
Q: What are the different types of steel angles used in automotive engineering?
In automotive engineering, there are several types of steel angles that are commonly used. These angles play a crucial role in providing structural strength, improving stability, and enhancing the overall performance and safety of vehicles. Here are some of the different types of steel angles used in automotive engineering: 1. L-angles: L-angles, also known as unequal angles, are often used in automotive engineering to provide structural support and reinforcement. These angles have different lengths on each side, allowing them to be easily welded or bolted onto various components of a vehicle's chassis or frame. 2. T-angles: T-angles, also known as tee angles, are frequently used in automotive engineering to join two components together at a right angle. These angles are designed with a flat base and a vertical stem, which enables them to provide stability and hold different parts of a vehicle securely in place. 3. C-angles: C-angles, also known as channel angles, are commonly utilized in automotive engineering to form the framework for various vehicle structures. These angles have a U-shaped cross-section and are often used to create structural components like door frames, roof rails, and chassis reinforcements. 4. Z-angles: Z-angles, also known as Z-bar angles, are widely employed in automotive engineering to provide strength and rigidity to different vehicle structures. These angles have a Z-shaped cross-section, which allows them to resist bending and torsional forces effectively. Z-angles are often used in applications such as suspension systems, roll bars, and body components. 5. U-angles: U-angles, also known as U-bar angles, are commonly used in automotive engineering to provide support and reinforcement to various vehicle components. These angles have a U-shaped cross-section and are frequently utilized to create structural members like bumper beams, frame reinforcements, and roll cage bars. These are just a few examples of the different types of steel angles used in automotive engineering. Each angle has its own unique properties and applications, and their selection depends on the specific requirements of the vehicle design and the desired structural integrity.

Send your message to us

This is not what you are looking for? Post Buying Request

Similar products

Hot products


Hot Searches

Related keywords