• Hot Rolled Equal Angle Steel with Grade GB-Q235 System 1
  • Hot Rolled Equal Angle Steel with Grade GB-Q235 System 2
  • Hot Rolled Equal Angle Steel with Grade GB-Q235 System 3
Hot Rolled Equal Angle Steel with Grade GB-Q235

Hot Rolled Equal Angle Steel with Grade GB-Q235

Ref Price:
get latest price
Loading Port:
Tianjin
Payment Terms:
TT OR LC
Min Order Qty:
25 m.t.
Supply Capability:
10000 m.t./month

Add to My Favorites

Follow us:


OKorder Service Pledge

Quality Product, Order Online Tracking, Timely Delivery

OKorder Financial Service

Credit Rating, Credit Services, Credit Purchasing

 Product Description:

OKorder is offering high quality Hot Rolled Equal Angle Steel at great prices with worldwide shipping. Our supplier is a world-class manufacturer of steel, with our products utilized the world over. OKorder annually supplies products to European, North American and Asian markets. We provide quotations within 24 hours of receiving an inquiry and guarantee competitive prices.

 

Product Applications:

Hot Rolled Equal Angle Steels are ideal for structural applications and are widely used in the construction of buildings and bridges, and the manufacturing, petrochemical, and transportation industries.

 

Product Advantages:

OKorder's Hot Rolled Equal Angle Steels are durable, strong, and resist corrosion.

 

Main Product Features:

·         Premium quality

·         Prompt delivery & seaworthy packing (30 days after receiving deposit)

·         Corrosion resistance

·         Can be recycled and reused

·         Mill test certification

·         Professional Service

·         Competitive pricing

 

Product Specifications:

Manufacture: Hot rolled

Grade: Q195 – 235

Certificates: ISO, SGS, BV, CIQ

Length: 6m – 12m, as per customer request

Packaging: Export packing, nude packing, bundled

EQUAL ANGLES SIZES

 

a(mm)

a1(mm)

thickness(mm)

length

25

25

2.5---3.0

6M/12M

30

30

2.5---4.0

6M/12M

38

38

2.5

6M/12M

38

38

3.0---5.0

6M/12M

40

40

3.0---6.0

6M/12M

50

50

3

6M/12M

50

50

3.7---6.0

6M/9M/12M

60

60

5.0---6.0

6M/9M/12M

63

63

6.0---8.0

6M/9M/12M

65

65

5.0---8.0

6M/9M/12M

70

70

6.0---7.0

6M/9M/12M

75

75

5.0---10.0

6M/9M/12M

80

80

6.0---10.0

6M/9M/12M

90

90

6.0---10.0

6M/9M/12M

100

100

6.0---12.0

6M/9M/12M

120

120

8.0-12.0

6M/9M/12M

125

125

8.0---12.0

6M/9M/12M

130

130

9.0-12.0

6M/9M/12M

140

140

10.0-16.0

6M/9M/12M

150

150

10---15

6M/9M/12M

160

160

10---16

6M/9M/12M

180

180

12---18

6M/9M/12M

200

200

14---20

6M/9M/12M

 

FAQ:

Q1: Why buy Materials & Equipment from OKorder.com?

A1: All products offered byOKorder.com are carefully selected from China's most reliable manufacturing enterprises. Through its ISO certifications, OKorder.com adheres to the highest standards and a commitment to supply chain safety and customer satisfaction.

Q2: What makes stainless steel stainless?

A2: Stainless steel must contain at least 10.5 % chromium. It is this element that reacts with the oxygen in the air to form a complex chrome-oxide surface layer that is invisible but strong enough to prevent further oxygen from "staining" (rusting) the surface. Higher levels of chromium and the addition of other alloying elements such as nickel and molybdenum enhance this surface layer and improve the corrosion resistance of the stainless material.

Q3: Can stainless steel rust?

A3: Stainless does not "rust" as you think of regular steel rusting with a red oxide on the surface that flakes off. If you see red rust it is probably due to some iron particles that have contaminated the surface of the stainless steel and it is these iron particles that are rusting. Look at the source of the rusting and see if you can remove it from the surface.

 

Images:

 

Hot Rolled Equal Angle Steel with Grade GB-Q235

Hot Rolled Equal Angle Steel with Grade GB-Q235

 

Q: Can steel angles be used as supports for signage or lighting fixtures?
Yes, steel angles can be used as supports for signage or lighting fixtures. Steel angles are commonly used in construction and can provide strong and sturdy support for various applications, including signage and lighting fixtures.
Q: How do you determine the required angle size for a specific application?
Several factors must be taken into consideration in order to determine the necessary angle size for a specific application. First and foremost, it is crucial to understand the purpose or function of the application. Different applications may require different angle sizes depending on the desired outcome. For instance, if the application involves cutting or shaping materials, the angle size must be determined based on the desired level of precision or detail. Secondly, the materials used in the application must be carefully considered. Some materials may be more brittle or prone to damage, while others may be more flexible. The chosen angle size should take into account the properties of the materials and minimize the risk of damage or failure. Thirdly, the specific conditions or environment in which the application will be used should be taken into account. Factors such as temperature, pressure, or moisture levels can impact the performance of the application and influence the required angle size. It is essential to select an angle size that can withstand the expected conditions and provide optimal functionality. Furthermore, consulting industry standards or guidelines that may exist for the specific application can be beneficial. These standards often provide recommended angle sizes based on best practices and past experiences. They serve as a useful reference point in determining the required angle size. Lastly, it may be necessary to conduct testing or simulations to verify the selected angle size. By creating prototypes or using computer-aided design (CAD) software, one can evaluate the performance and effectiveness of different angle sizes before making a final decision. In conclusion, determining the necessary angle size for a specific application involves considering the purpose, materials, environmental conditions, industry standards, and potentially conducting testing or simulations. By analyzing these factors, one can make an informed decision and select the most suitable angle size for the application.
Q: How do you calculate the moment of resistance for a steel angle?
To calculate the moment of resistance for a steel angle, you need to consider the properties of the angle section and its dimensions. The moment of resistance is a measure of the ability of the angle to resist bending. The formula to calculate the moment of resistance is: Moment of Resistance = Plastic Section Modulus × Yield Strength of Steel The plastic section modulus can be determined using the following formula: Plastic Section Modulus = (Width × Thickness^2) / 6 In this formula, the width refers to the distance between the outer edges of the angle, and the thickness refers to the thickness of the angle section. The yield strength of the steel is a material property and can be obtained from its specification or reference material. It represents the maximum stress the steel can withstand without permanent deformation. By substituting the values of the plastic section modulus and the yield strength of the steel into the formula for the moment of resistance, you can calculate the value. It is important to note that the dimensions used in the calculations should be in consistent units, such as millimeters or inches, depending on the units used in the yield strength value. This calculation provides an estimate of the moment of resistance for a steel angle and is useful in structural engineering applications to determine the capacity of the angle section under bending loads.
Q: Are there any limitations or restrictions on the use of steel angles in certain applications?
Yes, there are limitations and restrictions on the use of steel angles in certain applications. These restrictions mainly depend on the specific engineering requirements, load bearing capacity, and structural stability needed for the application. Additionally, factors such as the type of project, environmental conditions, and building codes and regulations may also impose limitations on the use of steel angles. It is important to consult with a structural engineer or an industry professional to ensure proper selection and usage of steel angles for specific applications.
Q: How much is a galvanized angle L50*50*5*2500
Probably around 40 yuan
Q: How are steel angles tested for quality control?
Steel angles are tested for quality control using various methods to ensure that they meet the required standards and specifications. One common method is visual inspection, where trained inspectors visually examine the angles for any surface defects, such as cracks, dents, or uneven surfaces. This helps to identify any visible flaws that may affect the structural integrity of the angles. Another method used for quality control testing is dimensional inspection. This involves measuring the dimensions of the angles, such as length, width, and thickness, to ensure they meet the specified tolerances. This is crucial as any deviations from the required dimensions can impact the performance and fit of the angles in various applications. Mechanical testing is also carried out to assess the mechanical properties of the steel angles. This includes tests such as tensile strength, yield strength, and elongation. Tensile strength measures the maximum amount of tensile stress the angle can withstand before breaking, while yield strength indicates the stress at which permanent deformation occurs. Elongation measures the ability of the angle to stretch without fracturing, providing insights into its ductility. In addition, chemical composition analysis is performed to verify that the steel angles contain the correct proportions of alloying elements and impurities. This is done using techniques such as spectrometry, which helps ensure that the steel meets the required chemical composition standards. Furthermore, non-destructive testing methods are used to identify any internal defects or inconsistencies in the steel angles without causing damage. Techniques like ultrasonic testing, magnetic particle testing, and radiographic testing are employed to detect potential flaws such as cracks, voids, or inclusions that might not be visible to the naked eye. Overall, a combination of visual inspection, dimensional inspection, mechanical testing, chemical composition analysis, and non-destructive testing is employed to ensure the quality and integrity of steel angles. These stringent quality control measures help to guarantee that the angles meet the necessary standards and can perform their intended functions safely and reliably.
Q: Can steel angles be used as framing members in buildings?
Yes, steel angles can be used as framing members in buildings. Steel angles are commonly used in construction as a structural element for framing, bracing, and supporting various components of a building. They offer excellent strength, durability, and load-bearing capacity, making them suitable for a wide range of applications in building construction. Steel angles can be used to create rigid frames, trusses, and connections, providing stability and support to the structure. Additionally, they can be easily welded, bolted, or connected using other fastening methods, allowing for flexible and efficient construction. Overall, steel angles are a versatile and reliable choice for framing members in buildings.
Q: Can steel angles be used for support structures in sports arenas or stadiums?
Yes, steel angles can be used for support structures in sports arenas or stadiums. Steel angles are commonly used in construction due to their strength, durability, and versatility. They are particularly suitable for support structures as they can withstand heavy loads and provide stability. In sports arenas or stadiums, steel angles can be used for various purposes such as supporting the roof, creating seating platforms, constructing staircases, and forming the framework for walls and partitions. The flexibility of steel angles allows architects and engineers to design custom support structures that meet the specific requirements of each sports arena or stadium. Furthermore, steel angles can be easily fabricated and joined, making them ideal for the construction of complex support systems. Their ability to resist bending, twisting, and compression ensures the overall stability and safety of the structure. Moreover, steel is a sustainable material that is 100% recyclable. This makes it an environmentally friendly choice for sports arenas or stadiums. By using steel angles for support structures, the construction industry can contribute to reducing carbon emissions and promoting a more sustainable future. Overall, steel angles are a reliable and efficient choice for support structures in sports arenas or stadiums. Their strength, durability, versatility, and sustainability make them an excellent option for ensuring the safety and stability of these large-scale structures.
Q: Can steel angles be used in the construction of transmission line towers?
Yes, steel angles can be used in the construction of transmission line towers. Steel angles are commonly used in the construction industry for various applications, including the fabrication of transmission line towers. These towers are used to support overhead power lines and require strong and durable materials to withstand the weight and stresses imposed by the transmission lines. Steel angles are ideal for this purpose as they offer high strength and structural integrity. They can be easily fabricated into various shapes and sizes, making them suitable for the complex geometries and load requirements of transmission line towers. Additionally, steel angles are corrosion-resistant, which is crucial for structures exposed to outdoor elements, such as transmission line towers. Furthermore, steel angles provide cost-effective solutions for transmission line tower construction. They are readily available in the market and can be easily sourced and manufactured. Their versatility and durability make them a popular choice for engineers and designers involved in the construction of transmission line towers. In conclusion, steel angles are commonly used in the construction of transmission line towers due to their high strength, structural integrity, corrosion resistance, and cost-effectiveness.
Q: Can steel angles be used in industrial or heavy-duty applications?
Yes, steel angles can definitely be used in industrial or heavy-duty applications. Steel angles are known for their strength, durability, and versatility, making them suitable for a wide range of applications in various industries. They provide structural support, reinforcement, and stability in heavy-duty machinery, equipment, and infrastructure projects. Steel angles are commonly used in construction, manufacturing, engineering, and transportation industries, among others. They can be employed in applications such as frames, supports, bracings, platforms, beams, and trusses, where strength and load-bearing capabilities are crucial. Additionally, steel angles can withstand high temperatures, extreme weather conditions, and heavy loads, making them suitable for challenging industrial environments. Overall, steel angles are a reliable and efficient choice for industrial or heavy-duty applications due to their strength, durability, and adaptability.

Send your message to us

This is not what you are looking for? Post Buying Request

Similar products

Hot products


Hot Searches

Related keywords