• Angle steel; steel angle for sale System 1
  • Angle steel; steel angle for sale System 2
  • Angle steel; steel angle for sale System 3
Angle steel; steel angle for sale

Angle steel; steel angle for sale

Ref Price:
get latest price
Loading Port:
Shanghai
Payment Terms:
TT OR LC
Min Order Qty:
25 m.t.
Supply Capability:
10000 m.t./month

Add to My Favorites

Follow us:


OKorder Service Pledge

Quality Product, Order Online Tracking, Timely Delivery

OKorder Financial Service

Credit Rating, Credit Services, Credit Purchasing

Specifications of Angle Steel

1. Invoicing on theoretical weight or actual weight as customer request

2. Length: 6m, 9m, 12m as following table

3. Sizes

Angle Steel

Sizes: 25mm-250mm

a*t

25*2.5-4.0

70*6.0-9.0

130*9.0-15

30*2.5-6.6

75*6.0-9.0

140*10-14

36*3.0-5.0

80*5.0-10

150*10-20

38*2.3-6.0

90*7.0-10

160*10-16

40*3.0-5.0

100*6.0-12

175*12-15

45*4.0-6.0

110*8.0-10

180*12-18

50*4.0-6.0

120*6.0-15

200*14-25

60*4.0-8.0

125*8.0-14

250*25

5. Payment terms:

1).100% irrevocable L/C at sight.

2).30% T/T prepaid and the balance against the copy of B/L.

3).30% T/T prepaid and the balance against L/C

6.Material details:

Alloy No

Grade

Element (%)

C

Mn

S

P

Si

 

 

 

 

 

 

 

Q235

B

0.12—0.20

0.3—0.7

≤0.045

≤0.045

≤0.3

 

 

 

 

 

 

 

Alloy No

Grade

Yielding strength point( Mpa)

Thickness (mm)

≤16

16--40

40--60

60--100

 

 

 

 

 

 

Q235

B

235

225

215

205

Alloy No

Grade

Tensile strength (Mpa)

Elongation after fracture (%)

Thickness (mm)

 

≤16

16--40

40--60

60--100

 

 

 

 

 

 

 

Q235

B

375--500

26

25

24

23

Usage & Applications of Angle Steel

According to the needs of different structures, Angle can compose to different force support component, and also can be the connections between components. It is widely used in various building structures and engineering structures such as roof beams, bridges, transmission towers, hoisting machinery and transport machinery, ships, industrial furnaces, reaction tower, container frame and warehouse etc.

Packaging & Delivery of Angle Steel

1. Packing: it is nude packed in bundles by steel wire rod

2. Bundle weight: not more than 3.5MT for bulk vessel; less than 3 MT for container load

3. Marks:

Color marking: There will be color marking on both end of the bundle for the cargo delivered by bulk vessel. That makes it easily to distinguish at the destination port.

Tag mark: there will be tag mark tied up on the bundles. The information usually including supplier logo and name, product name, made in China, shipping marks and other information request by the customer.

If loading by container the marking is not needed, but we will prepare it as customer request.

Production flow of Angle Steel

Material prepare (billet) —heat up—rough rolling—precision rolling—cooling—packing—storage and transportation

 

Q: How do you calculate the maximum allowable deflection for a steel angle beam?
To calculate the maximum allowable deflection for a steel angle beam, you need to consider several factors. The maximum allowable deflection is typically determined by the design code or standard being followed. Here is a general approach to calculate this deflection: 1. Determine the properties of the steel angle beam: Gather information such as the cross-sectional dimensions, moment of inertia, and modulus of elasticity of the steel angle beam. These properties can be obtained from the manufacturer's literature or through calculation. 2. Determine the applicable design code or standard: Different design codes or standards may have different criteria for allowable deflections. Examples include the American Institute of Steel Construction (AISC) Manual, Eurocode, or British Standards. Identify the relevant code for your project. 3. Identify the beam's support conditions: Determine whether the steel angle beam is simply supported or fixed at its ends. The support conditions will affect the maximum allowable deflection calculation. 4. Calculate the maximum allowable deflection: Use the appropriate formula or equation from the design code or standard to calculate the maximum allowable deflection. This formula will typically depend on the span length, beam properties, and support conditions. 5. Apply any additional factors or limitations: Some design codes or standards may introduce factors or limitations based on the specific application or load conditions. Consider any additional factors or limitations specified in the code and incorporate them into the calculation. 6. Compare the calculated deflection with the maximum allowable deflection: Once you have calculated the maximum allowable deflection using the relevant formula and considered any additional factors, compare it with the calculated deflection of the steel angle beam under the intended load conditions. If the calculated deflection is within the maximum allowable deflection, the design is considered acceptable. Otherwise, adjustments to the beam properties or design may be necessary. It is important to note that the above steps provide a general guideline for calculating the maximum allowable deflection for a steel angle beam. The specific calculation method may vary depending on the design code or standard being followed, so it is crucial to consult the applicable code or seek professional guidance for accurate and reliable results.
Q: Can steel angles be used for storage racks?
Yes, steel angles can be used for storage racks. Steel angles are commonly used in the construction industry for their strength and durability. They can easily be shaped into various configurations, including the design of storage racks. The angles provide structural support and stability, making them ideal for storing heavy items. Additionally, steel angles are resistant to corrosion, which is important for maintaining the integrity of the storage racks over time. Overall, steel angles are a reliable and commonly used material for constructing storage racks.
Q: What does "angle length" and "limb width" mean?
Also available models that model is the number of centimeters wide, such as angle 3#. The model does not mean the size of the different edges and sizes of the same model. Therefore, the width, the edge and the thickness of the angle iron should be filled out in the contract and other documents, so as not to be indicated by the model alone. Standard Specification for hot-rolled equal angle iron is 2#-20#. The angle iron can be made up of different force components according to the different structure, and can also be used as the connecting piece between the components. Widely used in a variety of architectural and engineering structures, such as beams, bridges, towers, hoisting and conveying machinery, ships, industrial furnace, reaction tower, container frame and warehouse.
Q: What are the environmental impact considerations of using steel angles?
The use of steel angles in various industries does have environmental impact considerations that need to be taken into account. One major consideration is the extraction and processing of iron ore to produce steel. The mining of iron ore can have significant environmental impacts, including habitat destruction, soil erosion, and water pollution. Additionally, the extraction process requires large amounts of energy, contributing to greenhouse gas emissions and air pollution. Furthermore, the production of steel involves the use of coal and other fossil fuels, which also contribute to greenhouse gas emissions. The burning of these fuels releases carbon dioxide and other pollutants, leading to climate change and air pollution. Steel production also generates a significant amount of waste, including slag and other byproducts. Proper disposal and management of these waste materials are crucial to minimize their impact on the environment. Transportation and logistics also play a role in the environmental impact of using steel angles. The transportation of steel products from manufacturing facilities to construction sites or other end-users can contribute to carbon emissions, especially if long distances are involved. However, it is worth noting that steel is a highly durable material with a long lifespan. This longevity can offset some of the environmental impacts associated with its production and transportation. To minimize the environmental impact of using steel angles, several strategies can be employed. Firstly, using recycled steel reduces the need for extracting new iron ore and decreases energy consumption and emissions. Incorporating recycled content into steel production is an effective way to reduce the environmental footprint. Additionally, improving energy efficiency in steel manufacturing processes can help reduce greenhouse gas emissions. Adopting cleaner technologies, such as electric arc furnaces, can significantly reduce carbon emissions compared to traditional blast furnace methods. Furthermore, sustainable transportation practices, such as utilizing efficient shipping methods or promoting local sourcing, can help reduce the carbon footprint associated with the transportation of steel angles. Overall, while the use of steel angles does have environmental impact considerations, implementing sustainable practices can mitigate these impacts and contribute to a more environmentally friendly industry.
Q: How do you prevent steel angles from bending under load?
To prevent steel angles from bending under load, there are a few key measures that can be taken: 1. Select the appropriate angle size and material: Ensure that the steel angle chosen is of an adequate size and material strength to withstand the expected load. Consult structural engineering guidelines or professionals to determine the right dimensions and material composition for the specific application. 2. Reinforce the angle: Strengthen the steel angle by adding additional support or reinforcement. This can be achieved through techniques such as welding additional plates to the angle, using gussets or stiffeners, or adding diagonal bracing. These reinforcements help distribute the load more evenly and reduce the risk of bending. 3. Increase the thickness: If possible, increasing the thickness of the steel angle can enhance its load-bearing capacity. A thicker angle will have greater resistance to bending and deformation under load. 4. Proper installation: Ensure that the steel angles are installed correctly and securely to maximize their ability to resist bending. This includes using appropriate fasteners, such as bolts or welds, and following proper installation techniques. 5. Avoid excessive loads: Preventing steel angles from bending under load also involves careful consideration of the maximum load that they will be subjected to. Avoid overloading the angles beyond their design capacity, as this can significantly increase the risk of bending or failure. 6. Regular inspections: Regularly inspect the steel angles for any signs of bending, cracking, or deformation. Timely identification of any potential issues allows for prompt maintenance or reinforcement, preventing further damage or accidents. It is crucial to consult with a qualified structural engineer or professional experienced in steel fabrication to ensure proper design and implementation of these measures to prevent steel angles from bending under load.
Q: What is the bending capacity of a steel angle?
The ability of a steel angle to withstand bending or flexing without breaking or deforming excessively is known as its bending capacity. This capacity reflects the angle's structural strength and is typically influenced by factors such as the angle's dimensions, thickness, type of steel, and presence of any additional reinforcements or supports. To determine the bending capacity, it is common to express it as the maximum load or stress that the angle can endure before it permanently deforms at its yield point. The bending capacity of a steel angle can vary significantly based on these factors, and it is of utmost importance to consider this capacity during the design and construction of structures that incorporate steel angles to ensure their structural integrity and safety.
Q: How do you calculate the stability of a steel angle column?
The stability of a steel angle column can be calculated using various methods, such as the Euler buckling formula or the interaction equation. These methods involve considering factors such as the load applied, the column's length, the material's properties, and the column's cross-sectional area. By analyzing these parameters, engineers can determine the critical buckling load or the factor of safety, which reflects the column's stability.
Q: Are steel angles suitable for high-temperature applications?
Yes, steel angles are suitable for high-temperature applications. Steel is known for its high strength and durability, and it retains its structural integrity even at elevated temperatures. Additionally, steel angles can withstand thermal expansion and contraction without deformation or failure, making them a reliable choice for high-temperature environments.
Q: Can steel angles be used in industrial or heavy-duty applications?
Absolutely, steel angles are a perfect fit for industrial or heavy-duty uses. Renowned for their robustness, endurance, and flexibility, steel angles are highly versatile and find application across a wide range of industries. They play a vital role in providing structural reinforcement, support, and stability to heavy-duty machinery, equipment, and infrastructure projects. Construction, manufacturing, engineering, transportation, and various other industries commonly employ steel angles. Their usage spans frames, supports, bracings, platforms, beams, and trusses, where strength and load-bearing capacity are paramount. Moreover, steel angles can withstand extreme temperatures, harsh weather conditions, and heavy loads, making them ideal for demanding industrial environments. In summary, steel angles are a dependable and efficient choice for industrial or heavy-duty applications, thanks to their strength, durability, and adaptability.
Q: How do you calculate the critical buckling load for a steel angle?
In order to determine the critical buckling load for a steel angle, one must take into consideration the properties of the angle section and how it interacts with the applied loads. The critical buckling load refers to the maximum load that the angle section can handle before it buckles or fails in a lateral-torsional manner. The initial step involves calculating the section properties of the steel angle, such as its moment of inertia (I) and section modulus (Z). These properties can be obtained either from standard structural design tables or through mathematical calculations. Subsequently, the effective length factor (K) for the angle section needs to be considered. This factor accounts for the angle's end conditions and how it is restrained against buckling. Different end conditions have varying values for K, which can be determined from design codes or engineering references. Once the section properties and effective length factor have been determined, the critical buckling load can be calculated using Euler's buckling equation: Pcr = (π^2 * E * I) / (K * L^2) Here, Pcr represents the critical buckling load, π is a mathematical constant (approximately 3.14159), E denotes the modulus of elasticity of the steel, I signifies the moment of inertia of the angle section, K represents the effective length factor, and L stands for the unsupported length of the angle section. By substituting the appropriate values for E, I, K, and L into the equation, one can calculate the critical buckling load for the steel angle. It is crucial to note that the critical buckling load is a theoretical value and should be compared to the actual applied loads to ensure the safety of the angle section under the given conditions.

Send your message to us

This is not what you are looking for? Post Buying Request

Similar products

Hot products


Hot Searches

Related keywords