• JIS SS400 Angle Steel System 1
  • JIS SS400 Angle Steel System 2
  • JIS SS400 Angle Steel System 3
  • JIS SS400 Angle Steel System 4
JIS SS400 Angle Steel

JIS SS400 Angle Steel

Ref Price:
$497.62 - 608.20 / m.t. get latest price
Loading Port:
China Main Port
Payment Terms:
TT or LC
Min Order Qty:
25mts m.t.
Supply Capability:
80000-100000MTS/YEAR m.t./month

Add to My Favorites

Follow us:


OKorder Service Pledge

Quality Product, Order Online Tracking, Timely Delivery

OKorder Financial Service

Credit Rating, Credit Services, Credit Purchasing

 Specifications of JIS SS400 Angle Steel

1.Standards:GB,ASTM,BS,AISI,DIN,JIS

2.Invoicing on theoretical weight or actual weight as customer request

3.Material: JIS G3192,SS400;SS540.

4. Payment terms:

1).100% irrevocable L/C at sight.

2).30% T/T prepaid and the balance against the copy of B/L.

3).30% T/T prepaid and the balance against L/C

5.Sizes:

JIS SS400 Angle Steel

 

EQUAL ANGLES SIZES

 

a(mm)

a1(mm)

thickness(mm)

length

25

25

2.5---3.0

6M/12M

30

30

2.5---4.0

6M/12M

38

38

2.5

6M/12M

38

38

3.0---5.0

6M/12M

40

40

3.0---6.0

6M/12M

50

50

3

6M/12M

50

50

3.7---6.0

6M/9M/12M

60

60

5.0---6.0

6M/9M/12M

63

63

6.0---8.0

6M/9M/12M

65

65

5.0---8.0

6M/9M/12M

70

70

6.0---7.0

6M/9M/12M

75

75

5.0---10.0

6M/9M/12M

80

80

6.0---10.0

6M/9M/12M

90

90

6.0---10.0

6M/9M/12M

100

100

6.0---12.0

6M/9M/12M

120

120

8.0-12.0

6M/9M/12M

125

125

8.0---12.0

6M/9M/12M

130

130

9.0-12.0

6M/9M/12M

140

140

10.0-16.0

6M/9M/12M

150

150

10---15

6M/9M/12M

160

160

10---16

6M/9M/12M

180

180

12---18

6M/9M/12M

200

200

14---20

6M/9M/12M

5. Material Specifications:

Grade

Yield StrengthN/mm²

Extension Strength N/mm²

Thickness of Steel,mm

16

16-40

40-100

100

SS330

205

195

175

165

330-430

SS400

245

235

215

205

400-510

SS490

285

275

255

245

490-610

SS540

400

390

-

-

540

Usage & Applications JIS SS400 Angle Steel

Trusses;

Transmission towers;

Telecommunication towers;

Bracing for general structures;

Stiffeners in structural use.

Packaging & Delivery of JIS SS400 Angle Steel

1. Transportation: the goods are delivered by truck from mill to loading port, the maximum quantity can be loaded is around 40MTs by each truck. If the order quantity cannot reach the full truck loaded, the transportation cost per ton will be little higher than full load.

2. With bundles and load in 20 feet/40 feet container, or by bulk cargo, also we could do as customer's request.

3. Marks:

Color mark: There will be color marking on both end of the bundle for the cargo delivered by bulk vessel. That makes it easily to distinguish at the destination port.

Tag mark: There will be tag mark tied up on the bundles. The information usually including supplier logo and name, product name, made in China, shipping marks and other information request by the customer.

If loading by container the marking is not needed, but we will prepare it as customer request.

Production flow of JIS SS400 Angle Steel

Material prepare (billet) —heat up—rough rolling—precision rolling—cooling—packing—storage and transportation

 JIS SS400 Angle Steel

 

JIS SS400 Angle Steel

 

JIS SS400 Angle Steel

 

 

 

Q: What are the considerations for selecting the appropriate steel angle finish?
When selecting the appropriate steel angle finish, there are several considerations that need to be taken into account. One of the primary considerations is the intended use or application of the steel angle. Different finishes offer varying levels of corrosion resistance, which is particularly important in environments where the steel angle will be exposed to moisture or chemicals. For example, a hot-dip galvanized finish provides excellent corrosion resistance and is often preferred for outdoor applications or in environments with high humidity levels. On the other hand, a plain steel finish may be suitable for indoor applications where corrosion resistance is not a major concern. Another consideration is the desired aesthetic appearance. Steel angles can be finished in various ways to achieve different looks. For instance, a mill finish provides a raw, industrial appearance, while a powder coat finish offers a wide range of color options and a more polished look. The choice of finish will depend on the desired aesthetic effect and the overall design of the project. Furthermore, the level of durability required should also be taken into consideration. Some finishes, such as a zinc plating or a stainless steel finish, provide enhanced durability and resistance to wear and tear, making them suitable for heavy-duty applications or areas with high traffic. Conversely, a painted finish may be more prone to chipping or scratching, making it less suitable for applications that require long-term durability. Lastly, cost is an important factor to consider. Different finishes have varying costs associated with them, so it is essential to balance the desired finish with the available budget. It is worth noting that while certain finishes may have a higher upfront cost, they may provide long-term cost savings by reducing maintenance or replacement needs. In conclusion, the selection of the appropriate steel angle finish depends on factors such as corrosion resistance, aesthetic appearance, durability requirements, and budget considerations. By carefully evaluating these considerations, one can choose the most suitable finish that meets both functional and aesthetic needs.
Q: What are the standard dimensions for unequal leg steel angles?
The standard dimensions of unequal leg steel angles can vary depending on project-specific requirements or the country of use. However, there are widely accepted standard dimensions that are commonly employed across industries. In the United States, the American Society for Testing and Materials (ASTM) typically defines the standard dimensions for unequal leg steel angles. According to ASTM A6/A6M, the standard specification for general requirements for rolled structural steel bars, plates, shapes, and sheet piling, unequal leg steel angles are identified by their nominal size and weight per foot. For instance, a frequently utilized unequal leg steel angle may have a nominal size of 2 x 1-1/2 inches and a weight per foot of 2.71 pounds. Another commonly encountered dimension is 3 x 2 inches, with a weight per foot of 4.23 pounds. While specific project requirements may cause these dimensions to vary, they serve as a general reference for the standard dimensions of unequal leg steel angles.
Q: Can steel angles be used for storage racks?
Yes, steel angles can be used for storage racks. Steel angles are commonly used in the construction industry for their strength and durability. They can easily be shaped into various configurations, including the design of storage racks. The angles provide structural support and stability, making them ideal for storing heavy items. Additionally, steel angles are resistant to corrosion, which is important for maintaining the integrity of the storage racks over time. Overall, steel angles are a reliable and commonly used material for constructing storage racks.
Q: How do steel angles behave under seismic forces?
Steel angles behave differently under seismic forces depending on their design, size, and connection details. Generally, steel angles are commonly used in seismic-resistant structures due to their ability to dissipate energy and resist lateral forces. Here are some key characteristics of how steel angles behave under seismic forces: 1. Ductility: Steel angles exhibit high ductility, which allows them to undergo large deformations without failure. This property is crucial in seismic design as it allows the structure to absorb and dissipate energy during an earthquake, preventing sudden collapse. 2. Flexibility: Steel angles have the ability to flex and bend under seismic forces, allowing them to absorb energy and reduce the impact on the overall structure. This flexibility helps in distributing the seismic forces throughout the structure, minimizing localized damage. 3. Connection behavior: Proper connection design is crucial to ensure the performance of steel angles under seismic forces. The connections should be designed to allow for rotation and accommodate the expected displacements during an earthquake. Adequate connections prevent the angles from becoming brittle or failing prematurely. 4. Buckling resistance: Steel angles are susceptible to buckling under compression forces. To enhance their buckling resistance, lateral bracing or stiffeners are often used. These elements provide additional support to the angles and help prevent buckling during seismic events. 5. Strength and stiffness: Steel angles have high strength and stiffness, which allows them to resist the lateral forces induced by an earthquake. The strength of steel angles can be enhanced through proper material selection, such as using higher-grade steel with greater yield strength. Overall, steel angles are well-suited for seismic-resistant structures due to their ductility, flexibility, and strength. However, their behavior under seismic forces heavily relies on proper design, connection details, and adherence to seismic codes and standards. It is essential to consult with structural engineers and follow best practices to ensure the optimal performance of steel angles in seismic design.
Q: Angle iron specifications 125 * 80 * 101 m multiple
Angle steel is a kind of carbon structural steel for construction. It is a simple section steel, mainly used in the frame of metal component and workshop. In use, better weldability, plastic deformation and mechanical strength are required. The raw steel billet for producing angle steel is low carbon square billet, and the finished product angle iron is made by hot rolling, normalizing or hot rolling.
Q: Can steel angles be used for framing windows and doors?
Yes, steel angles can be used for framing windows and doors. Steel angles provide structural support and stability, making them suitable for framing openings such as windows and doors in construction projects.
Q: Can steel angles be used to create decorative elements in architecture?
Yes, steel angles can definitely be used to create decorative elements in architecture. Steel angles, also known as angle irons, are versatile and can be easily manipulated to create various shapes and designs. They can be cut, bent, and welded to form intricate patterns, ornamental details, and decorative accents. Steel angles can be used in various architectural applications, such as railings, balusters, window grilles, door frames, brackets, and ornamental trims. Their strength and durability make them suitable for both indoor and outdoor use. They can be finished with different coatings, such as paint or powder coating, to enhance their appearance and protect them from corrosion. Architects and designers often incorporate steel angles in modern and contemporary designs to add an industrial, sleek, and minimalist touch. The clean lines and geometric shapes of steel angles can provide a modern aesthetic to buildings and structures. They can be used to create unique and eye-catching patterns, adding visual interest and a sense of style to architectural projects. Moreover, steel angles can also be combined with other materials, such as glass, wood, or stone, to create a striking contrast and achieve a harmonious blend of materials. This versatility allows for endless design possibilities, enabling architects to create truly customized and distinctive decorative elements. In conclusion, steel angles can be effectively used to create decorative elements in architecture. Their versatility, strength, and potential for customization make them an ideal choice for architects and designers looking to add aesthetic appeal and uniqueness to their projects.
Q: Can steel angles be used as structural supports for bridges?
Indeed, structural supports for bridges can indeed be formed using steel angles. In bridge construction, steel angles are widely employed owing to their remarkable strength and adaptability. They frequently serve as beams or columns within bridge structures, imparting support and stability. These angles are generally fashioned from hot-rolled steel and are obtainable in diverse sizes and thicknesses, enabling engineers to conceive and fabricate bridges of varying spans and loads. Furthermore, steel angles can be effortlessly interconnected and welded, rendering them a cost-efficient and proficient option for constructing bridges.
Q: Are steel angles resistant to pests or insects?
Pests and insects pose a threat to steel angles as they lack resistance against them. Unlike treated wood and other materials, steel angles do not possess innate abilities to repel or deter pests and insects. Nevertheless, when combined with other pest control methods, steel angles can still serve as an effective solution to prevent damage caused by pests or insects. One approach is to seal off any gaps or openings surrounding the steel angles, thus preventing pests or insects from infiltrating the area. Moreover, conducting regular inspections and maintenance is crucial in promptly identifying and resolving any pest or insect-related concerns before they escalate into significant issues.
Q: What is the process of cold bending steel angles?
The process of cold bending steel angles involves manipulating the angles into a desired shape without the use of heat. This is done by applying force or pressure to the angles in a controlled manner. First, the steel angle is secured in a bending machine or fixture that can hold it securely in place during the bending process. The operator then determines the desired angle and bend radius, which determines the amount of force that needs to be applied. Next, the bending machine or fixture applies pressure to the steel angle, gradually bending it to the desired shape. The force is typically applied slowly and evenly to prevent any deformation or damage to the steel. During the bending process, it is important to monitor the angle and ensure that it is bending evenly and smoothly. The operator may need to make adjustments to the pressure or angle of the bending machine to achieve the desired shape. Once the steel angle has been bent to the desired angle, it is carefully removed from the bending machine or fixture. It is important to handle the bent angle with care to prevent any distortion or damage. Cold bending steel angles offers several advantages over hot bending, such as reduced risk of material distortion or weakening due to heat. It also allows for more precise and controlled bending, making it suitable for a wide range of applications where accuracy is crucial. Overall, the process of cold bending steel angles involves securely positioning the angle in a bending machine or fixture, applying gradual and controlled pressure to bend it to the desired shape, and carefully removing the bent angle for further use.
GRAND is a well-known enterprise specilized in production and sales of angle steel. We are mainly producing the 40mm to 200mm equal angle steel and the annual production capacity is 1 million mtons. Our Angle steel is widely used in electric power tower, large-scale underground project, construction tower crane, bridge framework, etc.

1. Manufacturer Overview

Location Hebei, China
Year Established 2003
Annual Output Value Above US$ 500 Million
Main Markets Southeast Asia; middle east; South Korea; Africa
Company Certifications ISO 9001:2008

2. Manufacturer Certificates

a) Certification Name  
Range  
Reference  
Validity Period  

3. Manufacturer Capability

a) Trade Capacity
Nearest Port Tianjin
Export Percentage 30%-45%
No.of Employees in Trade Department 11-20 People
Language Spoken: English; Chinese
b) Factory Information
Factory Size: Above 10,000 square meters
No. of Production Lines 2
Contract Manufacturing OEM service offered
Product Price Range high; average

Send your message to us

This is not what you are looking for? Post Buying Request

Similar products

Hot products


Hot Searches

Related keywords