• Structure Steel Angle Bar System 1
  • Structure Steel Angle Bar System 2
  • Structure Steel Angle Bar System 3
Structure Steel Angle Bar

Structure Steel Angle Bar

Ref Price:
get latest price
Loading Port:
China Main Port
Payment Terms:
TT or LC
Min Order Qty:
25m.t. m.t.
Supply Capability:
80000-100000MTS/YEAR m.t./month

Add to My Favorites

Follow us:


OKorder Service Pledge

Quality Product, Order Online Tracking, Timely Delivery

OKorder Financial Service

Credit Rating, Credit Services, Credit Purchasing

Specifications of Structure Steel Angle Bar

1.Invoicing on theoretical weight or actual weight as customer request

2.Standards:GB,ASTM,BS,AISI,DIN,JIS3.Material:GBQ235B,Q345BorEquivalent;ASTMA36;EN10025,S235JR,S355JR;JISG3192,SS400;SS540.

4.Sizes:

 Equal Steel Angle

EQUAL ANGLES SIZES

 

a(mm)

a1(mm)

thickness(mm)

length

25

25

2.5---3.0

6M/12M

30

30

2.5---4.0

6M/12M

38

38

2.5

6M/12M

38

38

3.0---5.0

6M/12M

40

40

3.0---6.0

6M/12M

50

50

3

6M/12M

50

50

3.7---6.0

6M/9M/12M

60

60

5.0---6.0

6M/9M/12M

63

63

6.0---8.0

6M/9M/12M

65

65

5.0---8.0

6M/9M/12M

70

70

6.0---7.0

6M/9M/12M

75

75

5.0---10.0

6M/9M/12M

80

80

6.0---10.0

6M/9M/12M

90

90

6.0---10.0

6M/9M/12M

100

100

6.0---12.0

6M/9M/12M

120

120

8.0-12.0

6M/9M/12M

125

125

8.0---12.0

6M/9M/12M

130

130

9.0-12.0

6M/9M/12M

140

140

10.0-16.0

6M/9M/12M

150

150

10---15

6M/9M/12M

160

160

10---16

6M/9M/12M

180

180

12---18

6M/9M/12M

200

200

14---20

6M/9M/12M

5. Material details:

Alloy No

Grade

Element (%)

C

Mn

S

P

Si

 

 

 

 

 

 

 

Q235

B

0.12—0.20

0.3—0.7

≤0.045

≤0.045

≤0.3

 

 

 

 

 

 

 

Alloy No

Grade

Yielding strength point( Mpa)

Thickness (mm)

≤16

>16--40

>40--60

>60--100

 

 

 

 

 

 

Q235

B

235

225

215

205

Alloy No

Grade

Tensile strength (Mpa)

Elongation after fracture (%)

Thickness (mm)

 

≤16

>16--40

>40--60

>60--100

 

 

 

 

 

 

 

Q235

B

375--500

26

25

24

23

Usage & Applications of Structure Steel Angle Bar

According to the needs of different structures, Angle can compose to different force support component, and also can be the connections between components. It is widely used in various building structures and engineering structures such as roof beams, bridges, transmission towers, hoisting machinery and transport machinery, ships, industrial furnaces, reaction tower, container frame and warehouse etc.

 

 

 steel angle

Packaging & Delivery of Structure Steel Angle Bar

1. Transportation: the goods are delivered by truck from mill to loading port, the maximum quantity can be loaded is around 40MTs by each truck. If the order quantity cannot reach the full truck loaded, the transportation cost per ton will be little higher than full load.

2. With bundles and load in 20 feet/40 feet container, or by bulk cargo, also we could do as customer's request.

3. Marks:

Color mark: There will be color marking on both end of the bundle for the cargo delivered by bulk vessel. That makes it easily to distinguish at the destination port.

Tag mark: There will be tag mark tied up on the bundles. The information usually including supplier logo and name, product name, made in China, shipping marks and other information request by the customer.

If loading by container the marking is not needed, but we will prepare it as customer request.

 angle steel

 

 angle steel

 

 angle Steel

Q: Can steel angles be used for framing or supporting exterior cladding systems?
Yes, steel angles can be used for framing or supporting exterior cladding systems. Steel angles are commonly used in construction as they provide structural support and stability. When used for framing or supporting exterior cladding systems, steel angles offer durability and strength, ensuring the stability and longevity of the cladding. They are often used to create a framework or support structure for attaching the cladding materials, such as siding or panels, to the building's exterior. Steel angles can be easily customized and fabricated to fit specific design requirements, making them a versatile choice for framing or supporting exterior cladding systems.
Q: How do you calculate the buckling strength of a steel angle?
To calculate the buckling strength of a steel angle, several factors need to be considered. The buckling strength refers to the ability of the angle to resist buckling or collapse under applied loads. Firstly, the geometry of the steel angle must be determined. This includes the dimensions of the angle, such as the length of the legs and the thickness of the steel. Additionally, the cross-sectional properties, such as the moment of inertia and the section modulus, need to be calculated. Next, the effective length of the angle needs to be determined. The effective length is a measure of how restrained the angle is against buckling. It depends on factors such as the boundary conditions and the connection details. The effective length can be different for different modes of buckling, such as flexural or torsional buckling. Once the effective length is determined, the critical buckling load can be calculated using an appropriate buckling equation. There are several buckling equations available, depending on the boundary conditions and the mode of buckling. For example, the Euler buckling equation can be used for long, slender angles subjected to axial compression. Other equations, such as the Johnson buckling equation, may be used for more complex loading scenarios. The critical buckling load can then be converted to an allowable stress using a suitable safety factor. The safety factor accounts for uncertainties in the calculation and ensures that the angle can safely carry the applied load without buckling. The safety factor is typically specified by design codes or industry standards. In summary, calculating the buckling strength of a steel angle involves determining the geometry and effective length of the angle, applying an appropriate buckling equation, and converting the critical load to an allowable stress using a safety factor. It is important to consult relevant design codes and standards to ensure accurate and safe calculations.
Q: Are steel angles suitable for manufacturing support brackets for pipes?
Yes, steel angles are suitable for manufacturing support brackets for pipes. Steel angles are known for their strength and durability, making them an ideal material for supporting heavy loads such as pipes. They provide excellent structural support and can withstand the weight and pressure exerted by pipes. Additionally, steel angles are resistant to corrosion, which is crucial when dealing with pipes that may come into contact with moisture or chemicals. Their versatility allows for various design options, making it easier to customize support brackets to fit specific pipe sizes and configurations. Overall, steel angles are a reliable and practical choice for manufacturing support brackets for pipes.
Q: Can steel angles be used in framing?
Yes, steel angles can be used in framing. Steel angles are commonly used in construction for framing purposes due to their strength, durability, and versatility. They are often used to provide structural support and stability in various building applications, including framing walls, floors, roofs, and other structural elements.
Q: What are the different types of steel angle connections?
Construction and engineering projects commonly incorporate several different types of steel angle connections. Among the main types are the following: 1. Traditional and widely used, welded connections join steel angles by welding them at the point of contact. These connections offer exceptional strength and rigidity, making them ideal for heavy-duty applications. 2. Bolted connections involve using bolts and nuts to fasten the steel angles together. This method allows for easy disassembly and reassembly of the structure, which is useful when frequent adjustments or modifications are necessary. 3. Riveted connections utilize rivets to join the steel angles together. Rivets are inserted through pre-drilled holes in the angles and secured by hammering or pressing. Although riveted connections were commonly used in older structures, they are still occasionally employed in certain applications today. 4. Clipped connections, a type of bolted connection, use special clip angles to connect the angles. These clip angles are bolted to the main angles, creating a secure and rigid connection. Clipped connections find frequent use in steel trusses and frameworks. 5. Gusset plate connections involve using a steel plate, known as a gusset plate, to connect two or more steel angles. The gusset plate is typically bolted or welded to the angles, providing additional strength and stability. This type of connection is often employed in structures subjected to heavy loads or dynamic forces. Each type of steel angle connection possesses its own advantages and disadvantages. The choice of connection method depends on various factors, including load requirements, structural design, and project specifications.
Q: Can steel angles be used in outdoor or exposed applications?
Yes, steel angles can be used in outdoor or exposed applications. Steel is a highly durable and weather-resistant material, making steel angles suitable for withstanding outdoor conditions. Additionally, steel angles can be treated or coated to provide further protection against rust and corrosion, making them a reliable choice for outdoor and exposed applications.
Q: What is the minimum thickness for a steel angle bracket?
The minimum thickness for a steel angle bracket can vary depending on the specific application and load requirements. However, in general, a minimum thickness of 1/8 inch (3.18 mm) is often considered standard for most angle brackets.
Q: How do steel angles perform in terms of electromagnetic shielding?
Steel angles have a reputation for being highly effective in terms of electromagnetic shielding. This is mainly because of their exceptional electrical conductivity and magnetic permeability. These particular qualities enable steel angles to efficiently redirect or absorb electromagnetic waves, resulting in a reduced impact on adjacent electronic devices or sensitive equipment. The shape and geometry of steel angles also play a role in their shielding capabilities, as they can be strategically positioned to create barriers or enclosures that obstruct or redirect electromagnetic fields. Additionally, the thickness or gauge of the steel angle can further amplify its shielding performance. In general, steel angles find widespread use in a variety of applications where minimizing or controlling electromagnetic interference is crucial, such as in the construction, telecommunications, electronics, and automotive industries.
Q: Are steel angles resistant to fire?
Steel angles are generally more resistant to fire compared to other materials, as steel has a higher melting point. However, their resistance to fire depends on factors such as the thickness and coating of the steel, as well as the duration and intensity of the fire. It is important to note that in extreme fire conditions, steel can still lose its structural integrity.
Q: How do you calculate the moment resistance of a steel angle connection?
In order to determine the moment resistance of a steel angle connection, various factors should be taken into account. Firstly, it is necessary to ascertain the yield strength of the steel angle. This information can be found in the material specification or by carrying out a tensile test on a sample of the steel angle. Subsequently, the effective length of the steel angle needs to be calculated. This refers to the distance between the point where the moment is applied and the point where the angle connects to the supporting structure. Next, the cross-sectional properties of the steel angle, such as its moment of inertia and section modulus, need to be determined. These values can be calculated using established formulas or obtained from data provided by the manufacturer. By utilizing these values, the moment resistance can be calculated using the formula M = fy * Z, where M represents the moment resistance, fy stands for the yield strength of the steel angle, and Z denotes the plastic section modulus of the angle. It is important to note that the calculation of moment resistance assumes that the steel angle behaves elastically until it reaches its yield strength. If the angle is subjected to a moment beyond its yield strength, plastic deformation will occur, potentially resulting in a different actual moment resistance. In such scenarios, additional factors such as strain hardening and post-yield behavior must be taken into consideration to ensure an accurate calculation.
ROYAL,a well-known enterprise specializing in the production and sales of equal angle and unequal angle. Annual production capacity 2,000,000 mtons. Since the establishment of our company, we aim to provide our customer satisfactory service and completely implementing ISO9001 quality management system.

1. Manufacturer Overview

Location Tangshan, China
Year Established 1996
Annual Output Value Above US$ 300 Million
Main Markets Middle East; Korea; Southeast Aisa
Company Certifications ISO 9001:2008;

2. Manufacturer Certificates

a) Certification Name  
Range  
Reference  
Validity Period  

3. Manufacturer Capability

a) Trade Capacity
Nearest Port Tianjin;
Export Percentage 70% - 80%
No.of Employees in Trade Department 21-30 People
Language Spoken: English; Chinese;
b) Factory Information
Factory Size: Above 900,000 square meters
No. of Production Lines 3
Contract Manufacturing OEM Service Offered;
Product Price Range Average

Send your message to us

This is not what you are looking for? Post Buying Request

Similar products

Hot products


Hot Searches

Related keywords