• Special Steel 1020 Carbon Steel  Steel Round Bar System 1
  • Special Steel 1020 Carbon Steel  Steel Round Bar System 2
Special Steel 1020 Carbon Steel  Steel Round Bar

Special Steel 1020 Carbon Steel Steel Round Bar

Ref Price:
$300.00 - 500.00 / m.t. get latest price
Loading Port:
China main port
Payment Terms:
TT or LC
Min Order Qty:
25 m.t.
Supply Capability:
10000 m.t./month

Add to My Favorites

Follow us:


OKorder Service Pledge

Quality Product, Order Online Tracking, Timely Delivery

OKorder Financial Service

Credit Rating, Credit Services, Credit Purchasing

Specification

Type:
Carbon Steel
Shape:
Steel Round Bar
Standard:
AISI,ASTM,JIS,GB,BS,DIN,API,EN
Technique:
Hot Rolled,Cold Rolled,Cold Drawn,ERW,Forged,Saw,Extruded,EFW,Spring
Shape:
U Channel,Square,C Channel,Hexagonal,Round,Rectangular,Oval,LTZ
Surface Treatment:
Galvanized,Coated,Copper Coated,Color Coated,Oiled,Dry,Chromed Passivation,Polished,Bright,Black,PVDF Coated
Steel Grade:
Q195,Q215,Q235,Q215B,Q235B,RHB335,HRB400,200 Series,300 Series,400 Series,600 Series,SS400-SS490,10#,20#,A53(A,B)
Certification:
ISO,SGS,BV,IBR,RoHS,CE,API,BSI,UL
Net Weight:
as required
Length:
as required
Thickness:
as required

The details of our Steel

1. Produce Standard: as the GB, AISI, ASTM, SAE, EN, BS, DIN, JIS Industry Standard

 

2. Produce processes: Smelt Iron -EAF smelt Billet  - ESR smelt Billet -Hot rolled or forged get the  steel round bar and  plate

 

3. Heat treatment:

Normalized / Annealed / Quenched+Tempered

 

4. Quality assurance:

All order we can received  Third party inspection, You can let SGS, BV,.. and others test company test and inspect our products before Goods shipping.


Product information 


1.Specification of carbon steel 1020

       Round bar 

Diameter(mm)

Length (mm)


100~300

2000~5800


         Plate

Thickness(mm)  

Width (mm)       

Length (mm)    

20~70

105~610

2000~5800

The specification can be customised!

2.Chemical compositon of carbon steel 1020

NO.

C

Mn

Si

Cr

W

V

P

S

carbon steel 1020

0.43~0.50

0.60~0.90

0.15~0.35

--

--

--

≤0.030

≤0.030

3.Delivery condition of carbon steel 1020

Standard Number

   Forging

      Annealing 

Hardening and Tempering 

carbon steel 1020

1100~850

Subcritical annealing: 650~700

Isothermal annealing: 820~860

Hardening :820~860

Tempering: 550~660

4.Heat treatment of carbon steel 1020

1.Quench:1000-1040`C via 600`C and 850`C, preheating oil or wind cooling

2.Temper temperature should be higher than working temperature in order to stabilize the working size of mold

3.Heat up to 650°C of average temperature in order to eliminate the machined stress, 500  °c air cooling after electric cooker cooling

4.Tempering, 800-850  °c ,slow cooling after diathermia

5. Melting Process of SKD61 steel rod 

1.EAF: Electric Furnace+LF+VD(Optional)


5.Characteristic of carbon steel 1020

Nice machanical porpertys and worse  hardenability,so, it is used for machine parts

6.Application of carbon steel 1020  

(1)Can be made into mould template, mortise pin, column

(2)This kind of steel have good mechanical property, is widely used in structural parts which may support stress alternation, especially made into some connecting rods, bolts, wheel gear.

(3)This kind of steel is the most common blanks and materials of shaft parts.


Main product

High speed steel

 AISI

 M2,M4,M35,M42,T1

 DIN

 1.3343,1.3243,1.3247,1.3355

 JIS

 SKH51,SKH54,SKH35,SKH59,SKH2

 Cold work tool steel

 AISI

 D2,D5,D3,D6,A8,A2,O1

 DIN

 1.2379,1.2601,1.2080,1.2436,1.2631,1.2363,1.2510,1.2327

 JIS

 SKD10,SKD11,SKD1,SKS3

  Hot work tool steel

 AISI

 H13,H11,H21

 DIN

 1.2344,1.2343,1.2367,1.2581,1.2713

 JIS

 SKD61,SKD6,SKD7,SKD5SKT4

  Plastic mould steel

 AISI

 P20,P20+Ni,420

 DIN

 1.2311,1.2738,1.2083,1.2316

 JIS

 PDS-3,SUS420J1,SUS420J2

Alloy structural seel

 AISI

 5140,4340,4135,4140

 DIN

 1.7035,1.6511,1.7220,1.7225

 JIS

 SCr440,SNCM439,SCM435,SCM440

  Stainless steel

 AISI

 440C,420,430

 DIN

 1.4125

 JIS

 SUS440C

  Carbon steel

 AISI

 1045,1020

 DIN

 1.1191

 JIS

 S45C, G3101

Product show

.jpg

Workshop show

Special Steel 1020 Carbon Steel  Steel Round Bar


Shipping 

1. FedEx/DHL/UPS/TNT for samples, Door-to-Door;

2. By Air or by Sea for batch goods, for FCL; Airport/ Port receiving;

3. Customers specifying freight forwarders or negotiable shipping methods!

Delivery Time: 3-7 days for samples; 5-25 days for batch goods.

 

Payment Terms

1.Payment: T/T, L/C, Western Union, MoneyGram,PayPal; 30% deposits; 70% balance before delivery.

2.MOQ: 1pcs

3.Warranty : 3 years

4.Package Informations: 1) EXPORT, In 20 feet (GW 25 ton) or 40 feet Container (GW 25 ton)

                                        2)as customer's requirement


Why choose us? 

(1) The leading exporter in China special steel industry.       

(2) Large stocks for various sizes, fast delivery date.       

(3) Good business relationship with China famous factories.       

(4) More than 7 years steel exporting experience.       

(5) Good after-sales service guarantee. 




Q: How is special steel used in the aerospace industry?
Special steel is used in the aerospace industry for various applications due to its exceptional properties. It is used to manufacture critical components such as aircraft engines, landing gear, and structural parts. The high strength-to-weight ratio, corrosion resistance, and heat resistance of special steel make it a preferred choice for withstanding extreme conditions and ensuring the safety and reliability of aerospace equipment.
Q: How does special steel contribute to the production of precision instruments?
Special steel contributes to the production of precision instruments by providing the necessary strength, durability, and resistance to corrosion. It ensures that the instruments maintain their accuracy and functionality under varying conditions and heavy usage. The high-quality properties of special steel allow for precise machining and shaping, enabling the production of intricate and delicate components required in precision instruments.
Q: What are the properties of alloy steel?
Alloy steel possesses a combination of properties that make it highly versatile and desirable in various applications. It exhibits enhanced strength, hardness, and wear resistance due to the addition of alloying elements such as chromium, nickel, and molybdenum. Alloy steel can withstand high temperatures, making it suitable for use in elevated temperature environments. It also offers excellent corrosion resistance and is highly durable, making it ideal for applications that require long-term reliability. Additionally, alloy steel can be easily machined and fabricated, further adding to its appeal in various industries.
Q: Can special steel be used in the production of cutting tools?
Yes, special steel can be used in the production of cutting tools.
Q: What are the common applications of special steel in the manufacturing industry?
Special steel is commonly used in the manufacturing industry for a variety of applications including the production of tools, machinery parts, automotive components, construction materials, and aerospace equipment. Its high strength, durability, corrosion resistance, and heat resistance make it ideal for demanding environments and critical applications where regular steel may not suffice.
Q: Can special steel be used in the production of gearboxes?
Yes, special steel can be used in the production of gearboxes. Special steel, such as alloy steel or heat-treated steel, is often preferred for gear manufacturing due to its high strength, durability, and resistance to wear and fatigue. These properties make special steel well-suited for transmitting power and withstanding the demands of heavy-duty applications, making it an ideal material choice for gearboxes.
Q: Can special steel be used in the renewable energy sector?
Indeed, the renewable energy sector can effectively utilize special steel. This type of steel, also referred to as alloy steel, offers improved qualities such as exceptional strength, longevity, and resistance to corrosion, rendering it suitable for a diverse range of applications within renewable energy technologies. Within the realm of wind energy, special steel is employed for the production of wind turbine components. Wind turbine towers necessitate materials that are both robust and lightweight in order to withstand the dynamic loads and harsh environmental conditions they encounter. Special steel alloys, including high-strength low-alloy (HSLA) steel, provide the requisite strength-to-weight ratio, thereby ensuring the structural integrity of wind turbine towers. Furthermore, special steel proves advantageous in the field of solar energy. Concentrated solar power (CSP) plants rely on mirrors or lenses to concentrate sunlight, generating intense heat for the purpose of electricity generation. In the construction of these components, special steel alloys possessing high thermal conductivity and the ability to withstand high temperatures are employed. This ensures efficient energy capture and durability. In addition, special steel plays a crucial role in the manufacturing of equipment for hydroelectric power generation. Turbine components, such as blades, shafts, and runners, necessitate materials with exceptional strength and resistance to erosion and cavitation. Special steel alloys, including stainless steel and tool steel, exhibit these characteristics, guaranteeing the longevity and reliability of hydroelectric power systems. In summary, special steel finds widespread application within the renewable energy sector. Its qualities, such as high strength, durability, and resistance to corrosion, make it suitable for use in wind energy, solar energy, and hydroelectric power generation. Through the utilization of special steel, the renewable energy sector can enhance the performance, efficiency, and lifespan of various renewable energy technologies.
Q: What are the specific requirements for special steel used in the aerospace fastener industry?
To ensure the safety, reliability, and performance of aircraft components, the aerospace fastener industry demands special steel that meets specific criteria. These requirements include the following: 1. Remarkable strength: The special steel used in aerospace fasteners must possess exceptional strength to withstand the extreme forces and stresses experienced during flight. This is crucial for maintaining the structural integrity of aircraft components. 2. Resistance to corrosion: Aerospace fasteners are constantly exposed to various environmental conditions, including moisture, high temperatures, and chemicals. Therefore, the steel used must have excellent corrosion resistance properties to prevent degradation and maintain the longevity of the fasteners. 3. Exceptional fatigue resistance: Due to repeated loading and unloading cycles throughout the lifespan of aircraft components, the special steel used in aerospace fasteners must exhibit exceptional fatigue resistance. This ensures that the fasteners can endure cyclic loading without fracturing or experiencing any structural failures. 4. Ability to withstand temperature variations: Aerospace fasteners are subject to extreme temperature changes, ranging from sub-zero temperatures at high altitudes to elevated temperatures near engines. The steel used should possess excellent temperature resistance to maintain its mechanical properties under these conditions. 5. Lightweight nature: In the aerospace industry, weight reduction plays a crucial role in improving fuel efficiency and increasing the payload capacity of aircraft. Therefore, special steel used in aerospace fasteners should be lightweight without compromising on strength and other necessary properties. 6. Non-magnetic features: Certain aerospace applications require non-magnetic fasteners to prevent interference with sensitive electronic equipment, such as avionics and navigation systems. Consequently, the special steel used in such cases must exhibit non-magnetic characteristics. 7. Adherence to industry standards: Special steel used in the aerospace fastener industry must meet the stringent standards and specifications established by regulatory bodies like the International Organization for Standardization (ISO) and the National Aerospace and Defense Contractors Accreditation Program (NADCAP). Complying with these standards ensures the quality and reliability of the fasteners. Overall, meeting the specific requirements for special steel used in the aerospace fastener industry is paramount to ensuring the safety and performance of aircraft components. These requirements encompass high strength, corrosion resistance, fatigue resistance, temperature resistance, lightweight properties, non-magnetic characteristics, and compliance with industry standards.
Q: What are the specific requirements for special steel used in the railway track industry?
The specific requirements for special steel used in the railway track industry are designed to ensure the safety, durability, and efficiency of the tracks. Firstly, the steel used for railway tracks must have a high tensile strength to withstand the heavy loads and constant stress applied by trains. This strength allows the tracks to maintain their shape and prevent deformation, ensuring smooth and stable movement of the trains. Secondly, the special steel used in railway tracks must have excellent wear resistance. As trains constantly traverse the tracks, there is significant friction and wear between the train wheels and the tracks. Therefore, the steel needs to be able to withstand this wear and tear, minimizing the need for frequent maintenance and replacement. Thirdly, the steel used in railway tracks must have good fatigue resistance. Trains exert repetitive loads on the tracks, which can lead to fatigue failure if the steel is not able to withstand this cyclic loading. Fatigue resistance ensures that the tracks remain intact and safe for prolonged periods, reducing the risk of accidents. Furthermore, the steel must have high corrosion resistance to withstand exposure to various environmental and weather conditions. Railway tracks are exposed to moisture, temperature variations, and other corrosive elements, making it crucial for the steel to have the ability to resist rust and corrosion. In addition to these mechanical and physical properties, the steel used in the railway track industry must also meet specific dimensional and geometric requirements. This includes precise dimensions, straightness, and alignment to ensure proper installation and alignment of the tracks, allowing for smooth and safe train operations. Overall, the specific requirements for special steel used in the railway track industry revolve around strength, wear resistance, fatigue resistance, corrosion resistance, and dimensional accuracy. Meeting these requirements is essential to ensure the safety, longevity, and efficiency of railway tracks, facilitating smooth and reliable train transportation.
Q: How does special steel contribute to reducing product rejection rates in quality control?
Special steel contributes to reducing product rejection rates in quality control by providing superior strength, durability, and resistance to wear and tear. These properties enable the production of high-quality components and eliminate common defects such as distortion, cracking, or premature failure. Additionally, special steel's precise composition and manufacturing processes ensure consistency and accuracy in the final products, reducing the likelihood of manufacturing errors and subsequent rejection during quality control inspections.

Send your message to us

This is not what you are looking for? Post Buying Request

Similar products

Hot products


Hot Searches

Related keywords