Miniature Ball Bearings Steel
- Loading Port:
- China Main Port
- Payment Terms:
- TT or LC
- Min Order Qty:
- 50MT m.t.
- Supply Capability:
- 500000TONS/YEAR m.t./month
OKorder Service Pledge
OKorder Financial Service
You Might Also Like
Specifications of Miniature Ball Bearings Steel
1. Dimensional sizes: Thickness: 14~100mm.Length:3000~5800mm,Diameter :14-500mm
2.Chemical composition: C=0.96~1.05,Si=0.15~0.35,Mn=0.25~0.45,Cr=1.4~1.65,
P≤0.025,S≤0.025,Ni≤0.22,Cu≤0.20,Mo≤0.08
3. Grade: SAE51200/ GCr15 / 100cr6
4. Heat Treatment:
Soft annealing: heat to 680-720°C, cool slowly.
Hardness after annealing: Max. 241 HB
Hardening: 820 - 850 °C
Normalizing temperature: 840-880°C
Tempering: 540-680°C
5. Surface requirements: Black, grinding, bright, polish
6. Payment terms: 20% deposit, balance against L/C at sight or T/T.
Usage & Applications of Miniature Ball Bearings Steel
Miniature ball bearings are machinery components, which comprise an outer ring, inner ring, balls, retainers, shields and snap rings. High quality through hardened bearing steel improves reliability. High grade balls have improved roundness and finish to reduce vibration and noise. Super finished raceways to reduce friction, vibration and noise resulting in increased bearing life and reduced maintenance cost. Proven seal solutions effectively retain lubricant and exclude contamination from moisture, dust, and dirt which extends bearing life and reduces maintenance cost. Premium grease reduces noise, vibration and meets high temperature application requirements which extend bearing life. Bearings available 100% noise tested on state-of the art equipment to meet Electric Motor OEM low noise expectations. Product tolerances exceed bearing industry standards to allow for global interchangeability.
Packaging & Delivery of Miniature Ball Bearings Steel
10 pieces in one plastic tube, 10 tubes in one paper box or as customer required
Delivery time: 20 days after order confirmed.
Samples Policy: please arrange the sample cost and freight or freight collected. We will reduce this part expense from the total value of our first order.
Note:
1. According to national standard (GB) for our products, if not, supply according to national standards (GB) or agreement.
2. We can not only provide electric furnace +LF+VD and electro-slag re-melting (ESR)steel forging materials, but also forging products of piece, bar, etc.
3. Our company is equipped with roll equipment and can provide our customers with roll billets or finished.
4. Please send us your detailed specifications when inquire. We will reply to you ASAP.
- Q: How does special steel perform in cryogenic fatigue resistance?
- Special steel generally performs well in cryogenic fatigue resistance. The unique composition and heat treatment processes used in manufacturing special steel result in improved strength, toughness, and resistance to cracking at low temperatures. This makes it highly suitable for applications in cryogenic environments where materials are subjected to extreme cold temperatures and cyclic loading.
- Q: What are the main characteristics of wear-resistant steel?
- The main characteristics of wear-resistant steel include high hardness, toughness, and abrasion resistance. It is designed to withstand harsh conditions, such as heavy impact and abrasion, without significant wear or damage. Additionally, wear-resistant steel often has low maintenance requirements and a long lifespan, making it ideal for applications in industries such as mining, construction, and manufacturing.
- Q: How does special steel contribute to the toughness of products?
- Special steel contributes to the toughness of products through its superior strength, durability, and resistance to wear and corrosion. This high-quality steel is specifically engineered to possess exceptional mechanical properties and enhanced toughness, making it ideal for demanding applications. Its ability to withstand extreme conditions, impacts, and heavy loads ensures that products made from special steel are long-lasting, reliable, and capable of enduring harsh environments.
- Q: What are the requirements for special steel used in surgical instruments?
- The requirements for special steel used in surgical instruments are quite stringent due to the critical nature of their application in medical procedures. First and foremost, the steel must have excellent corrosion resistance to withstand the repeated exposure to body fluids and chemicals used in sterilization processes. This ensures that the instruments remain durable, hygienic, and safe for use. Another essential requirement is high strength and hardness, as surgical instruments must be able to withstand the forces exerted during procedures without bending, breaking, or losing their sharpness. Additionally, the steel should possess excellent wear resistance to maintain its cutting edge for an extended period, reducing the need for frequent sharpening or replacement. Biocompatibility is another crucial factor for surgical instruments. The steel should not cause any adverse reactions when in contact with living tissue or fluids, minimizing the risk of infection or complications for patients. This requires the absence of harmful elements or impurities that may trigger allergic responses or toxicity. Furthermore, the steel used in surgical instruments must be highly sterilizable. It should be capable of withstanding high temperatures during autoclaving or other sterilization methods without undergoing significant changes in its physical or mechanical properties. Lastly, the steel should be easily workable, allowing for precision manufacturing processes such as forging, machining, and polishing to create intricate instrument designs. This ensures that surgical instruments have the necessary shape, size, and surface finish required to perform specific tasks effectively. Overall, the requirements for special steel used in surgical instruments encompass corrosion resistance, strength, hardness, wear resistance, biocompatibility, sterilizability, and workability to ensure the instruments meet the demanding standards of the medical field.
- Q: What are the common challenges in casting special steel?
- The casting of special steel comes with various challenges due to its unique properties and composition. Some common challenges associated with casting special steel include the following: 1. High melting point: Special steels often possess higher melting points compared to regular carbon steels. This necessitates the utilization of specialized equipment and techniques to achieve the required casting temperature. 2. Alloying elements: Special steels frequently contain alloying elements like chromium, nickel, molybdenum, or vanadium. These elements enhance the properties of the steel but can also complicate the casting process. Proper control and understanding of these alloying elements are crucial to ensure the desired mechanical properties in the final product. 3. Oxidation and decarburization: During the casting process, special steel is susceptible to oxidation and decarburization. The exposure to oxygen and high temperatures can lead to surface defects and carbon loss, which can compromise the strength and hardness of the steel. Precise control of casting parameters, such as atmosphere and mold design, is necessary to minimize these issues. 4. Shrinkage and porosity: Special steels often exhibit a higher shrinkage rate during solidification compared to regular steels. This can result in shrinkage defects and porosity within the castings. Appropriate gating and riser design, along with the use of suitable feeding systems, are critical to mitigating these issues and ensuring sound castings. 5. Thermal stresses: Special steels may display higher thermal expansion coefficients, leading to significant thermal stresses during cooling and solidification. These stresses can cause cracking and distortion in the castings. Proper design considerations, such as the use of chills or controlled cooling techniques, are essential to minimize thermal stress and maintain dimensional stability. 6. Machinability: Special steels, especially those with high alloy content, can be challenging to machine due to their hardness and toughness. Casting defects like inclusions, segregations, or non-uniform microstructure can further complicate the machining process. Appropriate selection of cutting tools and machining parameters is necessary to achieve the desired dimensional accuracy and surface finish. In conclusion, casting special steel presents a range of challenges related to high melting points, alloying elements, oxidation, shrinkage, porosity, thermal stresses, and machinability. Overcoming these challenges requires a comprehensive understanding of material properties, precise process control, and the implementation of suitable casting techniques.
- Q: How does special steel ensure dimensional stability?
- Special steel ensures dimensional stability through a combination of factors such as controlled composition, precise heat treatment, and careful manufacturing processes. The specific composition of special steel is designed to have a lower coefficient of thermal expansion, which means it expands and contracts less with changes in temperature compared to regular steel. This ensures that the dimensions of the steel remain stable even under varying temperature conditions. Additionally, the heat treatment process further enhances the dimensional stability by refining the microstructure and reducing internal stresses. The careful manufacturing processes, including precise machining and quality control, also contribute to maintaining dimensional stability in special steel products.
- Q: How does special steel contribute to the manufacturing of defense equipment?
- Special steel plays a crucial role in the manufacturing of defense equipment due to its exceptional properties. It provides enhanced strength, durability, and resistance to extreme conditions, making it ideal for critical components such as armor plates, missile casings, or aircraft parts. Special steel's ability to withstand high temperatures, impacts, and corrosion ensures the reliability and longevity of defense equipment, ultimately enhancing the safety and effectiveness of military operations.
- Q: What are the different testing methods for special steel?
- There are several testing methods that are commonly used for special steel to ensure its quality and performance. These methods include: 1. Chemical Analysis: This method involves determining the chemical composition of the steel, including the presence of various elements and impurities. It helps in verifying the steel's adherence to specific chemical composition requirements. 2. Mechanical Testing: This testing method is used to evaluate the mechanical properties of special steel, such as its strength, ductility, hardness, and toughness. It includes tests like tensile testing, impact testing, hardness testing, and fatigue testing. 3. Microstructure Analysis: Microscopic examination of the steel's microstructure is essential to assess its internal structure, grain size, and shape. Techniques like optical microscopy, electron microscopy, and X-ray diffraction are used to observe the steel's microstructure and identify any defects or abnormalities. 4. Non-Destructive Testing (NDT): NDT methods are used to inspect the steel without causing any damage to it. These methods include ultrasonic testing, magnetic particle testing, liquid penetrant testing, and radiographic testing. They help detect surface and subsurface defects such as cracks, voids, inclusions, and discontinuities. 5. Corrosion Testing: Special steel is often used in applications where resistance to corrosion is crucial. Various corrosion testing methods, such as salt spray testing, electrochemical testing, and immersion testing, are used to evaluate the steel's resistance to corrosion and determine its corrosion rate. 6. Metallography: Metallographic testing involves preparing a cross-section of the steel sample, polishing it, and etching it to reveal its microstructure. It helps in assessing the quality, heat treatment effects, and grain size distribution of the steel. 7. Dimensional and Surface Inspection: This testing method ensures that the special steel meets the required dimensional tolerances and surface quality. Techniques such as dimensional measurement, surface roughness measurement, and visual inspection are used to verify the steel's conformity. By employing these testing methods, manufacturers and quality control personnel can ensure that special steel meets the necessary standards, specifications, and customer requirements.
- Q: How does special steel perform in high-wear applications?
- Special steel performs extremely well in high-wear applications. Its unique composition and properties, such as high hardness, toughness, and resistance to abrasion, make it highly durable and capable of withstanding intense wear and tear. This makes special steel an ideal choice for a wide range of demanding applications, including manufacturing tools, machinery parts, and components in industries such as mining, construction, and automotive. Overall, special steel's exceptional performance in high-wear applications ensures longevity, reliability, and cost-effectiveness.
- Q: What are the main characteristics of pressure vessel steel forgings?
- Pressure vessel steel forgings have several main characteristics that make them suitable for use in pressure vessels. Firstly, pressure vessel steel forgings are known for their high strength and toughness. This is crucial as pressure vessels are typically subject to high levels of internal pressure, and the steel must be able to withstand this without deforming or rupturing. The forgings are carefully designed and manufactured to ensure they have the necessary strength and toughness to withstand these pressures. Secondly, pressure vessel steel forgings have excellent resistance to corrosion. As pressure vessels often contain fluids or gases that can be corrosive, it is important that the steel used in their construction is resistant to corrosion. This helps to ensure the longevity and reliability of the pressure vessel. The steel forgings are often made with specific alloying elements that enhance their corrosion resistance. Another important characteristic of pressure vessel steel forgings is their ability to maintain their mechanical properties at high temperatures. Pressure vessels may be subjected to elevated temperatures due to the nature of the process or fluid they are containing. The forgings are designed to retain their strength and toughness even under these high-temperature conditions, ensuring the safety and reliability of the pressure vessel. Furthermore, pressure vessel steel forgings are typically manufactured with strict quality control measures in place. This is necessary to ensure that the forgings meet the required standards and specifications for pressure vessel applications. The manufacturing process includes thorough inspections, testing, and documentation to ensure that the forgings meet the necessary quality and safety requirements. Overall, the main characteristics of pressure vessel steel forgings include high strength and toughness, excellent corrosion resistance, the ability to withstand high temperatures, and strict quality control measures. These characteristics make pressure vessel steel forgings ideal for use in pressure vessels, providing the necessary strength, reliability, and safety required in such applications.
1. Manufacturer Overview
Location | Jiangsu, China |
Year Established | 1990 |
Annual Output Value | Above US$ 20 Million |
Main Markets | Mid East; Eastern Europe; North America |
Company Certifications |
2. Manufacturer Certificates
a) Certification Name | |
Range | |
Reference | |
Validity Period |
3. Manufacturer Capability
a) Trade Capacity | |
Nearest Port | Shanghai |
Export Percentage | 20% - 30% |
No.of Employees in Trade Department | 21-50 People |
Language Spoken: | English; Chinese |
b) Factory Information | |
Factory Size: | Above 100,000 square meters |
No. of Production Lines | 1 |
Contract Manufacturing | OEM Service Offered; |
Product Price Range | High; Average |
Send your message to us
Miniature Ball Bearings Steel
- Loading Port:
- China Main Port
- Payment Terms:
- TT or LC
- Min Order Qty:
- 50MT m.t.
- Supply Capability:
- 500000TONS/YEAR m.t./month
OKorder Service Pledge
OKorder Financial Service
Similar products
Hot products
Hot Searches
Related keywords