Special Steel AISI 1010 Carbon Steel Round Bar
- Loading Port:
- China main port
- Payment Terms:
- TT OR LC
- Min Order Qty:
- 25 m.t.
- Supply Capability:
- 10000 m.t./month
OKorder Service Pledge
OKorder Financial Service
You Might Also Like
Specification
The details of our Steel
1. Produce Standard: as the GB, AISI, ASTM, SAE, EN, BS, DIN, JIS Industry Standard
2. Produce processes: Smelt Iron -EAF smelt Billet - ESR smelt Billet -Hot rolled or forged get the steel round bar and plate
3. Heat treatment:
Normalized / Annealed / Quenched+Tempered
4. Quality assurance:
All order we can received Third party inspection, You can let SGS, BV,.. and others test company test and inspect our products before Goods shipping.
Product information
1.Specification of aisi 1010 steel | ||||||||||||||||
Round bar | Diameter(mm) | Length (mm) | ||||||||||||||
100~300 | 2000~5800 | |||||||||||||||
Plate | Thickness(mm) | Width (mm) | Length (mm) | |||||||||||||
20~70 | 105~610 | 2000~5800 | ||||||||||||||
The specification can be customised! | ||||||||||||||||
2.Chemical compositon of aisi 1010 steel | ||||||||||||||||
NO. | C | Mn | Si | Cr | Cu | Ni | P | S | ||||||||
Aisi 1010 | 0.08~0.13 | 0.30~0.60 | 0.15~0.35 | ≤0.20 | ≤0.25 | ≤0.40 | ≤ 0.50 | |||||||||
DIN1.1191 | 0.42~0.48 | 0.6~0.9 | 0.15~0.35 | ≤0.15 | ≤0.3 | ≤0.2 | ||||||||||
JIS S45C | 0.42~0.50 | 0.5~0.8 | ≤0.40 | ≤0.40 | ≤ 0.4 | |||||||||||
GB45 | 0.42~0.50 | 0.5~0.8 | 0.17~0.37 | ≤0.25 | ≤0.25 | ≤0.3 | ≤0.035 | ≤0.035 | ||||||||
3. Mechanical properties of aisi 1010 steel | ||||||||||||||||
Annealing | Forging | Tempering and Hardening | Normalization | |||||||||||||
Subcritical annealing: 650~700 Isothermal annealing: 820~860 | 1100~850 | Tempering: 550~660 Hardening : 820~860 water | 840~880 |
Main product
High speed steel | |
AISI | M2,M4,M35,M42,T1 |
DIN | 1.3343,1.3243,1.3247,1.3355 |
JIS | SKH51,SKH54,SKH35,SKH59,SKH2 |
Cold work tool steel | |
AISI | D2,D5,D3,D6,A8,A2,O1 |
DIN | 1.2379,1.2601,1.2080,1.2436,1.2631,1.2363,1.2510,1.2327 |
JIS | SKD10,SKD11,SKD1,SKS3 |
Hot work tool steel | |
AISI | H13,H11,H21 |
DIN | 1.2344,1.2343,1.2367,1.2581,1.2713 |
JIS | SKD61,SKD6,SKD7,SKD5SKT4 |
Plastic mould steel | |
AISI | P20,P20+Ni,420 |
DIN | 1.2311,1.2738,1.2083,1.2316 |
JIS | PDS-3,SUS420J1,SUS420J2 |
Alloy structural seel | |
AISI | 5140,4340,4135,4140 |
DIN | 1.7035,1.6511,1.7220,1.7225 |
JIS | SCr440,SNCM439,SCM435,SCM440 |
Stainless steel | |
AISI | 440C,420,430 |
DIN | 1.4125 |
JIS | SUS440C |
Carbon steel | |
AISI | 1045,1020 |
DIN | 1.1191 |
JIS | S45C, G3101 |
Product show
Workshop show
Shipping
1. FedEx/DHL/UPS/TNT for samples, Door-to-Door;
2. By Air or by Sea for batch goods, for FCL; Airport/ Port receiving;
3. Customers specifying freight forwarders or negotiable shipping methods!
Delivery Time: 3-7 days for samples; 5-25 days for batch goods.
Payment Terms
1.Payment: T/T, L/C, Western Union, MoneyGram,PayPal; 30% deposits; 70% balance before delivery.
2.MOQ: 1pcs
3.Warranty : 3 years
4.Package Informations: 1) EXPORT, In 20 feet (GW 25 ton) or 40 feet Container (GW 25 ton)
2)as customer's requirement
Why choose us?
(1) The leading exporter in China special steel industry.
(2) Large stocks for various sizes, fast delivery date.
(3) Good business relationship with China famous factories.
(4) More than 7 years steel exporting experience.
(5) Good after-sales service guarantee.
- Q: What are the main applications of special steel in the defense electronics?
- Special steel is extensively used in defense electronics for various applications. It is primarily used for manufacturing components that require high strength, superior corrosion resistance, and excellent electromagnetic shielding properties. Special steel is crucial for producing military-grade electronic enclosures, connectors, and circuit boards, ensuring the protection and reliability of sensitive electronic equipment in harsh environments. Additionally, it is utilized in the production of radar systems, missile guidance systems, and communication equipment, where its exceptional thermal stability, durability, and electromagnetic compatibility play a vital role in enhancing the performance and effectiveness of defense electronics.
- Q: What is the role of cobalt in special steel?
- Due to its unique properties and characteristics, cobalt plays a crucial role in special steel. It serves as a significant alloying element in the production of high-performance steel alloys, particularly those used in demanding applications where strength, hardness, and heat resistance are vital. Cobalt's primary function in special steel is to enhance its overall strength and toughness. By forming a solid solution with iron, cobalt creates a fine-grained microstructure that improves the mechanical properties of the steel. This results in increased hardness, wear resistance, and the ability to withstand high temperatures and harsh environments. Moreover, cobalt improves the steel's resistance to corrosion and oxidation, making it suitable for extreme conditions in industries like aerospace, oil and gas, and automotive. Additionally, it enhances the steel's magnetic properties, making it valuable in electrical and electronic devices. Another essential role of cobalt in special steel is its ability to facilitate the formation of stable carbides. The addition of cobalt aids in the precipitation and dispersion of carbides, contributing to the steel's high-temperature strength and excellent retention of hardness at elevated temperatures. Furthermore, cobalt assists in refining the grain structure of the steel, resulting in improved machinability and surface finish. It also allows for better control over the hardenability of the steel, determining its capacity for heat treatment and achieving desired hardness levels. To summarize, cobalt plays a multifaceted and indispensable role in special steel. It enhances the steel's strength, hardness, and toughness, improves its resistance to corrosion and oxidation, and enables it to withstand high temperatures. Cobalt also aids in refining the microstructure of the steel, enhancing machinability and allowing precise control over its hardenability.
- Q: What are the main advantages of using special steel in the construction industry?
- The main advantages of using special steel in the construction industry are its exceptional strength, durability, and versatility. Special steel has a high tensile strength, allowing for the construction of structures that can withstand heavy loads and extreme conditions. Its durability ensures a longer lifespan for buildings, reducing maintenance costs. Additionally, special steel can be manufactured in various forms and shapes, making it highly versatile and adaptable to different construction requirements.
- Q: What are the properties of structural steel?
- Structural steel possesses several key properties that make it an ideal material for construction. Firstly, it has high strength, allowing it to bear heavy loads and resist deformation. Additionally, it exhibits excellent ductility, meaning it can be easily shaped without breaking. Structural steel is also highly durable and corrosion-resistant, providing long-lasting stability to buildings and structures. Moreover, it offers versatility in terms of design and construction methods. Finally, it is a sustainable and recyclable material, making it environmentally friendly. Overall, the properties of structural steel contribute to its widespread use in various construction projects.
- Q: How does special steel contribute to the energy equipment industry?
- Special steel plays a crucial role in the energy equipment industry by providing materials with superior strength, durability, and corrosion resistance. These properties enable the production of high-performance components such as turbine blades, pressure vessels, and pipelines, which are essential for power generation, transmission, and distribution. Additionally, special steel's ability to withstand extreme temperatures and harsh operating conditions enhances the efficiency and reliability of energy equipment, ultimately contributing to the overall sustainability and advancement of the industry.
- Q: What are the different methods of surface anodizing for special steel?
- There are several methods of surface anodizing for special steel, including electrochemical anodizing, plasma electrolytic oxidation (PEO), and chromic acid anodizing. Each method has its own advantages and suitability for different steel types and desired outcomes. Electrochemical anodizing involves immersing the steel in an electrolyte solution and applying an electric current to form an oxide layer on the surface. PEO utilizes a high-voltage electrical discharge to create a thicker and more durable anodized layer. Chromic acid anodizing, on the other hand, utilizes a mixture of chromic acid and sulfuric acid to achieve corrosion protection and improved surface properties. The choice of method depends on the specific requirements and characteristics of the special steel being anodized.
- Q: What are the different methods of surface ion nitriding for special steel?
- Surface ion nitriding of special steel can be achieved through various methods. These methods encompass: 1. Utilizing DC Plasma Nitriding: Employing direct current (DC) plasma to ionize nitrogen gas, a plasma atmosphere is created. By subjecting the special steel to the plasma chamber and applying high voltage, the ions are accelerated towards the steel's surface, resulting in nitriding. 2. Adopting RF Plasma Nitriding: Similar to DC plasma nitriding, RF (Radio Frequency) plasma nitriding employs a radio frequency power supply to generate plasma instead of direct current. This method allows for better control over the nitriding process and can accommodate more intricate geometries. 3. Employing Pulse Plasma Nitriding: By applying short pulses of high voltage to the steel surface, a plasma discharge is created. These pulses are repeated at regular intervals, enabling precise control over the nitriding process. Pulse plasma nitriding is commonly used for steels with sensitive properties that may be affected by prolonged exposure to high temperatures. 4. Combining Plasma Assisted Nitriding: This method combines plasma nitriding with other surface treatment techniques, such as physical vapor deposition (PVD) or chemical vapor deposition (CVD). Initially, the steel is coated with a thin layer of reactive material, followed by nitriding in a plasma atmosphere. This combination enhances the surface properties of the special steel, such as wear resistance or corrosion resistance. 5. Employing Glow Discharge Nitriding: This method involves placing the special steel in a chamber filled with a nitrogen-rich gas, such as ammonia. Applying high voltage creates a glow discharge, which ionizes the gas and generates nitrogen ions that diffuse into the steel's surface. Glow discharge nitriding is commonly employed for small parts or components with complex shapes. It is crucial to consider factors such as desired properties, steel geometry, and application-specific requirements when selecting the most suitable method for surface ion nitriding of special steel.
- Q: How does special steel withstand extreme temperatures?
- Due to its unique composition and production process, special steel possesses the ability to endure extreme temperatures. An essential factor in achieving this is the incorporation of alloying elements such as chromium, molybdenum, and nickel, which enhance the steel's resistance to heat. These elements react to form stable oxides on the steel's surface, forming a protective shield against oxidation and corrosion at high temperatures. Furthermore, special steel undergoes specific heat treatment methods like quenching and tempering, which refine its microstructure and enhance its mechanical properties. This process strengthens the steel, enabling it to maintain its strength and hardness even under harsh temperature conditions. In addition, the manufacturing process of special steel requires precision and control over the cooling rate. This controlled cooling prevents the formation of brittle phases, ensuring that the steel maintains its toughness and ductility at both high and low temperatures. Moreover, the grain size of special steel is meticulously regulated through techniques like grain refinement, resulting in a more uniform and fine-grained microstructure. This fine-grained structure enhances the steel's ability to resist thermal fatigue and creep, enabling it to endure prolonged exposure to extreme temperatures without significant degradation. Overall, the combination of alloying elements, specialized heat treatment processes, controlled cooling, and refined microstructure renders special steel highly capable of withstanding extreme temperatures while preserving its structural integrity and mechanical properties.
- Q: Can special steel be used in the production of surgical instruments?
- Yes, special steel can be used in the production of surgical instruments. Special steel, such as stainless steel, is commonly used in the manufacturing of surgical instruments due to its durability, corrosion resistance, and ability to withstand sterilization processes. This type of steel ensures that surgical instruments maintain their integrity and functionality, making them suitable for use in medical procedures.
- Q: How does tungsten contribute to the properties of special steel?
- Special steel greatly benefits from the inclusion of tungsten, which is a critical element that significantly impacts its properties. One of the key advantages of incorporating tungsten into steel lies in its ability to enhance strength and hardness. This is achieved through the formation of a solid solution with iron, resulting in a microstructure with fine grains that effectively increase overall toughness and wear resistance. Furthermore, tungsten plays a pivotal role in improving the high-temperature strength of special steel. Due to its high melting point, tungsten maintains its strength even under elevated temperatures, making it an ideal choice for applications that require resistance to heat and thermal stress. Consequently, special steel containing tungsten can be employed in environments with extreme temperatures, such as gas turbines, rocket nozzles, and cutting tools. Another crucial contribution of tungsten lies in enhancing the corrosion resistance of special steel. By forming stable carbides, tungsten provides a protective barrier against corrosion and erosion, effectively enhancing the durability and longevity of the steel. This is particularly invaluable in industries where the steel is exposed to corrosive environments, such as chemical processing, marine applications, and oil and gas exploration. Moreover, tungsten significantly aids in the machinability of special steel. It assists in reducing the occurrence of built-up edges during cutting operations, resulting in improved surface finish and prolonged tool life. This characteristic proves highly advantageous in industries that require precision machining, such as automotive, aerospace, and tool manufacturing. In conclusion, the presence of tungsten in special steel is of utmost importance as it enhances strength, hardness, high-temperature performance, corrosion resistance, and machinability. Its unique properties make it an indispensable component in the production of high-quality steel utilized across various industries.
Send your message to us
Special Steel AISI 1010 Carbon Steel Round Bar
- Loading Port:
- China main port
- Payment Terms:
- TT OR LC
- Min Order Qty:
- 25 m.t.
- Supply Capability:
- 10000 m.t./month
OKorder Service Pledge
OKorder Financial Service
Similar products
Hot products
Hot Searches
Related keywords