Gear Steel SAE 1020 Carbon Steel Round Bar
- Loading Port:
- China main port
- Payment Terms:
- TT OR LC
- Min Order Qty:
- 30 m.t.
- Supply Capability:
- 10000 m.t./month
OKorder Service Pledge
OKorder Financial Service
You Might Also Like
Specification
Gear Steel SAE 1020 Carbon Steel Round Bar
Product Information:
1. Standard GB:20, AISI: 1020, JIS: S20C
2. Specification
Dia: 8mm-480mm or according to your requirements
Length: 1m-12mm or according to your requirements
3. Delivery Condition
Hot rolled, forged, QT heat treatment and normalizing
4. Characteristics:S20C/ 1020/ 20
1) The strength and hardness of S20C/ 1020/ 20 is higher than that of S15C/ 1015/ 15.
2) Good plasticity and weldability.
3) Good toughness after hot rolling and normalization.
5. Application: High-quality carbon structural steel/S20C/ 1020/ 20
S20C structural carbon steel bar /1020 /20 can be used to be manufactured medium or small carburization or nitrocarburizing parts and press forging parts, such as lever shaft, selector fork of speed changing box, gear, heavy mechanical lever and shackle, etc.
Product Overviews:
Product Name | Typical Grades | Diameter(mm) | Standard adopted |
Carbon Steel | 20 (1020/S20C/C22) | Ø16-Ø300 | GB/SAE/JIS/DIN |
40 (1040/S40C/C40) | |||
45 (1045/S45C/C45) | |||
Bearing Steel | GCr9 (51100/SUJ1) | Ø12-Ø250 | |
GCr15 (52100/SUJ2/100Gr6) | |||
GCr9SiMn (A485-Gr.1/SUJ3) | |||
Cr-Mo Steel | 20Cr (5120/SCr420H/20Cr4) | Ø12-Ø250 | |
40Cr (5140/SCr440/41Cr4) | |||
42CrMo(4140/SCM440/42CrMo4) | |||
Gear Steel | 20CrNiMo | Ø16-Ø600 | |
20CrMn(5115/SMnC420/20MnCr5) | |||
20CrNiMo(8620/SNCM220/20CrMiMo2) |
Product Show:
Our Advantages:
· Industry experience over 20 years.
· Shipment of goods -More than 70 countries worldwide.
· The most convenient transport and prompt delivery.
· Competitive price with best service.
· High technical production line with top quality products.
· High reputation based on best quality products.
With our experienced, enthusiastic and dynamic staffs, we assure to bring you the products with best quality, reasonable prices and good after-sales services under the motto: Friends First, Business After.
Communication, Experience, Expertise and Best efforts are our Promises to you.
- Q: How is special steel used in the production of hydraulic components?
- Special steel is used in the production of hydraulic components due to its high strength, durability, and corrosion resistance properties. It allows for the manufacturing of hydraulic parts that can withstand high pressure, extreme temperatures, and harsh operating conditions. The use of special steel ensures the longevity and reliability of hydraulic components, making them suitable for various industries such as automotive, aerospace, and manufacturing.
- Q: How does special steel perform in terms of corrosion resistance in marine environments?
- Special steel alloys, specifically designed for marine environments, exhibit excellent corrosion resistance. Due to their higher levels of alloying elements like chromium, nickel, and molybdenum, these steels form a protective oxide layer that prevents rusting and pitting, even when exposed to saltwater and other harsh marine conditions. Their exceptional corrosion resistance ensures prolonged durability, reduced maintenance, and enhanced performance in marine environments.
- Q: What are the different types of alloy steel?
- There are several different types of alloy steel, including stainless steel, tool steel, high-strength low-alloy steel, and maraging steel. Each type has its own unique composition and properties, making them suitable for various applications in industries such as construction, automotive, and aerospace.
- Q: Can special steel be used for luxury goods?
- Yes, special steel can definitely be used for luxury goods. Special steel, known for its exceptional durability, strength, and unique properties, can be utilized in the production of high-end luxury goods such as watches, jewelry, knives, and even high-performance vehicles. Its superior quality and aesthetic appeal make it an ideal choice for manufacturers seeking to create luxurious and exclusive products.
- Q: How does special steel contribute to the aerospace safety?
- Special steel contributes to aerospace safety in several ways. Firstly, special steel is used in the construction of aircraft components such as landing gear, engine parts, and structural supports. These components need to withstand extreme stress, high temperatures, and corrosive environments, and special steel provides the necessary strength, durability, and resistance to ensure the safety and reliability of the aircraft. Secondly, special steel is utilized in the manufacturing of aerospace tools and equipment. These tools are essential for maintenance, repairs, and inspections of aircraft systems. The high strength and toughness of special steel ensure that these tools can withstand heavy use, enabling efficient and accurate maintenance procedures, ultimately contributing to the overall safety of aerospace operations. Furthermore, special steel is also used in the production of safety-critical fasteners and connectors in aerospace applications. These fasteners play a crucial role in holding aircraft components together, and their reliability is paramount for the safe operation of the aircraft. Special steel's excellent mechanical properties, including high tensile strength and resistance to fatigue, ensure the integrity and security of these fasteners, reducing the risk of component failure and enhancing aerospace safety. Overall, the use of special steel in aerospace applications significantly contributes to safety by providing the necessary strength, durability, and reliability required in critical aircraft components, tools, and fasteners.
- Q: What are the main applications of special steel in the telecommunications sector?
- Special steel is used in various applications within the telecommunications sector. One of the main applications is in the manufacturing of transmission towers and poles. Special steel provides the necessary strength and durability to support the weight and withstand harsh weather conditions. Additionally, special steel is utilized in the production of cables and wires, where its high conductivity and resistance to corrosion play a crucial role in ensuring efficient and reliable data transmission.
- Q: How is special steel classified?
- Special steel is classified based on its chemical composition, physical properties, and intended use. It can be categorized into various types such as stainless steel, tool steel, alloy steel, and high-speed steel, each designed to meet specific requirements and applications in industries like automotive, aerospace, construction, and manufacturing.
- Q: What are the challenges in working with special steel?
- Working with special steel presents several unique challenges compared to working with regular steel. Here are some of the main challenges one may encounter when working with special steel: 1. High cost: Special steels often have higher production costs due to their unique composition and properties. The raw materials used in their production may be rare or require complex manufacturing processes, leading to increased costs. 2. Limited availability: Special steels are not as widely available as regular steels, making it more challenging to source them. This limited availability can lead to longer lead times and potentially higher costs when trying to procure the necessary materials. 3. Complexity in machining: Special steels can be difficult to machine due to their high hardness or toughness. Their unique properties may cause excessive tool wear, leading to increased machining time and costs. Specialized cutting tools and machining techniques may be required to overcome these challenges. 4. Heat treatment requirements: Special steels often require precise and specific heat treatment processes to achieve the desired mechanical properties. The complexity of heat treatment can be a challenge, as it requires careful control of temperature, time, and cooling rates. Improper heat treatment can lead to inconsistent material properties or even material failure. 5. Weldability issues: Some special steels may have poor weldability compared to regular steels. They may be prone to cracking or require preheating and post-weld heat treatment to ensure proper joint integrity. This can add complexity and cost to welding processes. 6. Corrosion resistance: While special steels may possess excellent mechanical properties, they can sometimes be more susceptible to corrosion compared to regular steels. This requires additional measures to protect the steel from corrosion, such as applying protective coatings or using corrosion-resistant alloys. 7. Knowledge and expertise: Working with special steels often demands a higher level of technical knowledge and expertise. The unique properties and characteristics of these materials require a deep understanding of their behavior and how to effectively work with them. This may require specialized training or collaboration with experts in the field. Despite these challenges, working with special steel can also offer various benefits, such as superior strength, durability, and performance in specific applications. By understanding and addressing these challenges, engineers and manufacturers can harness the unique properties of special steel to develop innovative and high-quality products.
- Q: What are the main factors that affect the machinability of special steel?
- The machinability of special steel can be influenced by several factors. One of the main factors is the composition of the steel itself. Special steels often have complex alloys added to enhance their properties, such as increased strength or corrosion resistance. However, these alloying elements can also have a negative impact on machinability. Elements like chromium, nickel, and molybdenum can cause the steel to become more difficult to machine due to their hardening or abrasive properties. Another factor that affects machinability is the microstructure of the steel. Special steels can undergo various heat treatments to achieve desired properties, but these treatments can also change the microstructure of the material. For example, the presence of carbides or precipitates can make the steel harder and more brittle, leading to increased tool wear and poorer machinability. The hardness of the steel is another important factor. Harder steels generally have lower machinability as they are more resistant to cutting forces. High-speed steels, which are commonly used for machining, can be used to counteract this issue to some extent. However, excessively hard steels may require specialized tooling or machining techniques to achieve satisfactory results. The presence of impurities or non-metallic inclusions in the steel can also affect machinability. These impurities can disrupt the cutting process, leading to reduced tool life and surface finish. Special steel manufacturers often strive to minimize impurities and control inclusion content to improve machinability. Lastly, the cutting parameters and machining conditions play a significant role in determining machinability. Factors such as cutting speed, feed rate, and depth of cut need to be optimized to achieve the best balance between material removal rate and tool life. Coolant usage and chip evacuation are also crucial considerations to prevent excessive heat buildup and chip recutting, which can negatively impact machinability. In summary, the main factors that affect the machinability of special steel include composition, microstructure, hardness, impurities, and cutting parameters. Understanding these factors and applying appropriate machining techniques can help maximize productivity and achieve high-quality machined components from special steels.
- Q: How does the microstructure of special steel affect its performance?
- The performance of special steel greatly depends on its microstructure. To enhance their properties and meet specific application requirements, special steels are alloyed with specific elements. The microstructure refers to how the steel's crystalline grains are arranged and whether any phase transformations are present within the material. One important aspect of the microstructure is the size of the grains. Through controlled cooling or adding alloys, fine-grained structures can be achieved, leading to improved strength, hardness, and toughness. Smaller grain sizes restrict the movement of dislocations within the material, resulting in increased strength and hardness. This is particularly crucial in applications where high strength-to-weight ratios are needed, such as aerospace or automotive components. The presence of different phases in the microstructure is another critical factor. By adding specific alloying elements, the formation of various phases like martensite, bainite, or ferrite can be promoted. These phases possess different mechanical properties, including hardness, toughness, and corrosion resistance. By carefully controlling the microstructure, it becomes possible to customize the steel's performance for specific applications. For instance, martensitic structures offer high hardness and wear resistance, making them ideal for cutting tools, while bainitic structures provide a good balance of strength and toughness, making them suitable for structural components. Moreover, the microstructure also determines how the steel responds to heat treatment processes like quenching and tempering. Heat treatments can modify the microstructure to achieve desired mechanical properties, such as increasing hardness or improving resistance to fatigue. The ability of the microstructure to transform during heat treatment enables precise control over the steel's performance characteristics. In conclusion, the microstructure of special steel has a significant impact on its performance. Grain size, phase distribution, and response to heat treatment are all crucial factors that influence the steel's mechanical properties and suitability for specific applications. By understanding and manipulating the microstructure, engineers can design special steels with enhanced performance, meeting the demanding requirements of various industries.
Send your message to us
Gear Steel SAE 1020 Carbon Steel Round Bar
- Loading Port:
- China main port
- Payment Terms:
- TT OR LC
- Min Order Qty:
- 30 m.t.
- Supply Capability:
- 10000 m.t./month
OKorder Service Pledge
OKorder Financial Service
Similar products
Hot products
Hot Searches
Related keywords