• Alloy Steel of Bearing System 1
  • Alloy Steel of Bearing System 2
  • Alloy Steel of Bearing System 3
  • Alloy Steel of Bearing System 4
Alloy Steel of Bearing

Alloy Steel of Bearing

Ref Price:
get latest price
Loading Port:
Guangzhou
Payment Terms:
TT or LC
Min Order Qty:
25MT m.t.
Supply Capability:
600000 Tons/Year m.t./month

Add to My Favorites

Follow us:


OKorder Service Pledge

Quality Product, Order Online Tracking, Timely Delivery

OKorder Financial Service

Credit Rating, Credit Services, Credit Purchasing

 

Specifications of Alloy Steel For Bearing

1. Grade: AISI 52100, ASTM E52100, DIN 1.3505,JIS SUJ2, GCr15

100Cr6

52100

SUJ2

GCr15

100CrMo7

100CrMo7

SUJ5

GCr18Mo

20CrMo4

4118H

SCM418

G20CrMo

20NICrMo2

8520H

SNCM220

G20CrNiMo

 -

 -

440C

9Cr18

X108CrMo17

S44004

440C

9Cr18Mo

 

2. Specification: Diameter: 5.5~350mm Length: 2000-6000mm or as required

3. Steel Grade: Bearing Steel

4. Certification: ISO9001-2000; CE, UL

5. Inspection: 100% Ultrasonic according to the test standards: SEP1921-84, GR.3 CLASS C/C

6. Packing situation: standard seaworthy packing or as customer required

7. Heat treatment:                                                                                                      

    Soft annealing: heat to 680-720°C, cool slowly.

    Hardness after annealing: Max. 241 HB

    Hardening: 820 - 850 °C

    Normalizing temperature: 840-880°C

    Tempering: 540-680°

 

Usage and Applications of Alloy Steel For Bearing

Alloy steel is used in making all kinds of bearing ring and rolling elements, like combustion engine, machine tool, and bearings for melting machine; also used for making tools and measuring tools.

Bearing steels are used for ball and roller bearing applications and are comprised of low carbon steels and high carbon through harden able steel.

Alloy Steel can be used in machine parts and engineering components.

Applications range: Chemical fertilizer pipe, building, machinery, textile industry, etc

 

Packaging & Delivery of Alloy Steel For Bearing

Packaging Detail: Standard seaworthy packing or as customer required; Packed in bundles with standard export sea-worthy package or as customer require

Delivery Detail: 45 days after order confirmed

Delivery condition: Black, peeled, machined

Trade terms: FOB, CFR, CIF

MOQ: 25 tons or at customer's demands

 

Production Flow of Alloy Steel For Bearing

Process: EAF+LF+VD+ Hot Rolled(Forged)+ Heat Treatment (Annealed, A Normalized, Q+T)

The processing is hot rolled (strictly control sulphur, phosphorus and non-metallic inclusions content and distribution).

 

 

 Production Alloy Steel

 

 Production of Alloy Steel  

Product Advantages of Alloy Steel For Bearing

1. Good comprehensive properties

2. Good performance in cutting and processing after spheroids annealing

3. High hardness and homogenization after quenching and tempering

4. High abrasive resistance and fatigue resistance

5. Large amount of metal elements

6. High abrasion resistant SAE 52100 bearing steel

7. Steel GCr15 is the most widely used bearing steel

 

Quality Assurance of Alloy Steel for Bearing

We are the ISO 9001:2000 authentication enterprises and we can provide the enterprise's quality written guarantee for all the exported products.

Certificate of quality is issued in English, in addition the normal terms, production process, the mechanical property (yield strength, tensile strength, elongation and hardness. forged ratio, UT test result, Grain size, heat treatment methods and the sample of is shown on the certificate of quality.

Q: How does special steel perform in extreme environments?
Special steel is specifically designed to perform exceptionally well in extreme environments. It has excellent resistance to corrosion, high temperatures, and mechanical stress, making it highly reliable and durable. Special steel also maintains its strength and integrity even in challenging conditions, ensuring optimal performance and longevity in extreme environments.
Q: How does special steel contribute to the medical aftermarket industry?
Special steel plays a crucial role in the medical aftermarket industry by providing high-quality materials for the manufacturing of various medical devices and instruments. Its unique characteristics, such as corrosion resistance, high strength, and biocompatibility, enable the production of durable and long-lasting equipment like surgical instruments, implants, and prosthetics. The use of special steel ensures the safety and effectiveness of these medical products, ultimately contributing to improved patient outcomes and advancements in healthcare.
Q: How does stainless steel contribute to the construction industry?
Stainless steel contributes to the construction industry by providing durability, corrosion resistance, and aesthetic appeal. It is widely used in structural applications, such as building facades, bridges, and roofing, as it can withstand harsh weather conditions and maintain its strength over time. Stainless steel's resistance to corrosion also makes it a suitable choice for plumbing, electrical, and HVAC systems, ensuring longevity and minimizing maintenance. Additionally, its sleek and modern appearance enhances the overall aesthetics of architectural designs.
Q: What are the main advantages of using special steel in the oil and gas industry?
The main advantages of using special steel in the oil and gas industry include its high strength, corrosion resistance, and ability to withstand extreme temperatures and pressures. Special steel is specifically designed to meet the demanding requirements of the industry, ensuring the integrity and reliability of equipment and structures. It also offers excellent weldability, allowing for efficient fabrication and installation processes. Overall, the use of special steel enhances safety, durability, and performance in oil and gas operations.
Q: Can special steel be used in automotive engine components?
Yes, special steel can be used in automotive engine components. Special steel, also known as alloy steel, is specifically designed to have enhanced properties such as increased strength, toughness, and heat resistance. These properties make it ideal for use in critical engine components that are subjected to high temperatures, stress, and wear. In automotive engines, special steel can be used in various components such as crankshafts, camshafts, connecting rods, valves, and piston rings. These components are subjected to extreme conditions, including high temperatures, pressure, and rotational forces. Special steel provides the required strength and durability to withstand these conditions, ensuring reliable engine performance and longevity. The use of special steel in automotive engine components offers several advantages. Firstly, it increases the strength and load-carrying capacity of the components, allowing them to handle higher power and torque outputs. Secondly, special steel improves the fatigue resistance and durability of the components, reducing the risk of failure and extending their service life. Lastly, special steel can withstand the high temperatures and thermal cycling experienced in the engine, preventing deformation and maintaining dimensional stability. Overall, the use of special steel in automotive engine components is crucial for achieving optimal performance, reliability, and longevity. It ensures that the engine can withstand the demanding conditions it operates under, providing a smoother and more efficient driving experience.
Q: What are the different surface treatments applied to special steel?
There are several different surface treatments that can be applied to special steel to enhance its properties and improve its performance. Some of the commonly used surface treatments include: 1. Heat treatment: This is a process that involves heating the steel to a specific temperature and then cooling it at a controlled rate. Heat treatment can be used to improve the hardness, strength, and toughness of the steel, as well as to enhance its resistance to wear and corrosion. 2. Coating: Coating the surface of special steel with a protective layer is another common surface treatment. This can be done using various methods such as electroplating, hot-dip galvanizing, or powder coating. Coatings can provide additional resistance to corrosion, improve the appearance of the steel, and increase its lifespan. 3. Nitriding: Nitriding is a process that involves diffusing nitrogen into the surface of the steel, typically at high temperatures. This forms a hard surface layer that improves the wear resistance and fatigue strength of the steel, while maintaining the core toughness. 4. Shot peening: Shot peening is a mechanical surface treatment that involves bombarding the steel surface with small spherical particles, typically made of steel or ceramic. This process induces compressive stresses in the surface layer, which improves the fatigue strength and resistance to stress corrosion cracking. 5. Passivation: Passivation is a chemical treatment that is used to remove impurities and contaminants from the surface of the steel, typically by immersing it in an acid solution. This process helps to restore the natural corrosion resistance of stainless steel by forming a protective oxide layer on the surface. 6. Electro-polishing: Electro-polishing is an electrochemical process that removes a thin layer of material from the surface of the steel. This treatment can improve the surface finish, remove micro-roughness, and enhance the corrosion resistance of the steel. These are just a few examples of the various surface treatments that can be applied to special steel. The choice of treatment depends on the specific requirements of the application and the desired properties of the steel.
Q: What are the different surface treatments used for special steel?
There are several surface treatments commonly used for special steel, including galvanization, nitriding, carburizing, and plating. Galvanization involves applying a protective zinc coating to prevent corrosion. Nitriding is a heat treatment process that enriches the surface of the steel with nitrogen, enhancing hardness and wear resistance. Carburizing involves introducing carbon into the steel's surface, creating a hardened layer. Plating, on the other hand, involves covering the steel with a thin layer of another metal, such as chrome or nickel, for improved aesthetics and corrosion resistance.
Q: How is high-speed tool steel used in the production of machining tools?
High-speed tool steel is used in the production of machining tools due to its exceptional hardness, strength, and heat resistance properties. It is commonly used to make cutting tools such as drills, end mills, taps, and inserts, which are vital for precision machining operations. The high-speed tool steel's ability to retain its hardness even at high temperatures allows these tools to withstand the intense heat generated during the machining process, resulting in improved performance and extended tool life.
Q: How does special steel contribute to the packaging industry?
Special steel contributes to the packaging industry by providing high strength, durability, and corrosion resistance, making it ideal for manufacturing packaging materials and machinery. It ensures the integrity and safety of packaging products, prevents damage during transportation, and extends the shelf life of perishable goods. Additionally, special steel's versatility allows for innovative packaging designs and customization, meeting the specific requirements and demands of different industries.
Q: What are the main applications of special steel in the textile industry?
Special steel is commonly used in the textile industry for various applications. One of the main applications is in the production of textile machinery, such as looms, spinning frames, and knitting machines. The use of special steel ensures high strength, durability, and precision in these machines, leading to increased productivity and efficiency in textile manufacturing. Additionally, special steel is utilized in the production of textile cutting tools, such as blades and needles, which require excellent hardness and wear resistance. These tools enable precise and efficient cutting of fabrics, contributing to the overall quality of textile products. In summary, special steel plays a crucial role in the textile industry by providing strong and durable machinery and high-performance cutting tools.
FORWARD is specialized in special steel, die steel, including: plastic die steel, hot work steel, cold work steel, alloy structural steel, bearing steel, high speed tool steel, carbon steel, stainless steel and so on with different specification. We sincerely provide high quality and favourite price. Our company keeps the principle of “reputation is fisrt, customer is our god”. Honest, pragmatic spirit are directing our production and sale, in order to serve our valued customer with convenient, top speed and best from here.

1. Manufacturer Overview

Location Guangdong, China
Year Established 2005
Annual Output Value Above US$ 100 Million
Main Markets korea, India, Malaysia, Brazil, Germany, Belgium, Middle East
Company Certifications

2. Manufacturer Certificates

a) Certification Name  
Range  
Reference  
Validity Period  

3. Manufacturer Capability

a) Trade Capacity
Nearest Port Guangzhou
Export Percentage 50%-80%
No.of Employees in Trade Department 21-100 People
Language Spoken: English; Chinese
b) Factory Information
Factory Size: 23,000 square meters
No. of Production Lines 1
Contract Manufacturing OEM servise offered
Product Price Range high; average

Send your message to us

This is not what you are looking for? Post Buying Request

Similar products

Hot products


Hot Searches

Related keywords