• Hot Rolled Mild Steel Round Bar Q235 Q345 Q355 System 1
  • Hot Rolled Mild Steel Round Bar Q235 Q345 Q355 System 2
  • Hot Rolled Mild Steel Round Bar Q235 Q345 Q355 System 3
  • Hot Rolled Mild Steel Round Bar Q235 Q345 Q355 System 4
  • Hot Rolled Mild Steel Round Bar Q235 Q345 Q355 System 5
  • Hot Rolled Mild Steel Round Bar Q235 Q345 Q355 System 6
Hot Rolled Mild Steel Round Bar Q235 Q345 Q355

Hot Rolled Mild Steel Round Bar Q235 Q345 Q355

Ref Price:
get latest price
Loading Port:
Tianjin
Payment Terms:
TT OR LC
Min Order Qty:
3 m.t.
Supply Capability:
10000 m.t./month

Add to My Favorites

Follow us:


OKorder Service Pledge

Quality Product, Order Online Tracking, Timely Delivery

OKorder Financial Service

Credit Rating, Credit Services, Credit Purchasing

Specification

Type:
Carbon Steel
Shape:
Steel Round Bar

 Hot Rolled Mild Steel Round Bar Q235 Q345 Q355

Name

SAE1045 Carbon Steel Round Bar

Shape

Round Bar/Square Bar/Flat Bar/Plate/Wire

Standard

GB/ASTM/SAE/AISI/DIN/JIS/EN/BS

Surface Treatment:

Black/Peeling/Polished/Machined  

Delivery Condition:

Hot Rolled or Forged/Peeled or Black Surface

Test

SGS/UT 100% Elements Testing

Certificate:

ISO/Mill Certificate

Service:

24 hours online service /

more than 20 years trading and manufacture 

Quality Assurance:

the third party inspection, such as SGS, BV, TUV…etc. is acceptable

Packaging Details:

seaworthy packaging or as per customer's packing instruction

 

Products Overview

Product Name

Typical Grades

Diameter(mm)

Standard adopted

Carbon Steel

20 (1020/S20C/C22)

Ø16-Ø300

GB/SAE/JIS/DIN

40 (1040/S40C/C40)

45 (1045/S45C/C45)

Bearing Steel

GCr9 (51100/SUJ1)

Ø12-Ø250

GCr15 (52100/SUJ2/100Gr6)

GCr9SiMn (A485-Gr.1/SUJ3)

Cr-Mo Steel

20Cr (5120/SCr420H/20Cr4)

Ø12-Ø250

40Cr (5140/SCr440/41Cr4)

42CrMo(4140/SCM440/42CrMo4)

Gear Steel

20CrNiMo

Ø16-Ø600

20CrMn(5115/SMnC420/20MnCr5)

20CrNiMo(8620/SNCM220/20CrMiMo2)

Packaging & Delivery

Packaging Detail

Sea worthy packing /as per customer's packing instruction

Delivery Detail

15 ~ 40 days after receiving the deposit

Hot Rolled Mild Steel Round Bar Q235 Q345 Q355

Product Show

Hot Rolled Mild Steel Round Bar Q235 Q345 Q355

 

Workshop

Hot Rolled Mild Steel Round Bar Q235 Q345 Q355

FAQ

Are you a trading company or manufacturer?

Manufacturer

What’s the MOQ?

3 metric ton

What’s your delivery time? 

15-35 days after downpayment received

Do you Accept OEM service?

Yes

what’s your delivery terms?

FOB/CFR/CIF

What's the Payment Terms?

30% as deposit,70% before shipment by T/T

Western Union acceptable for small amount.

L/C acceptable for large amount.

Scrow ,Paybal,Alipay are also ok 

Why  choose  us?

Chose happens because of quality, then price, We can give you both. 

Additionally, we can also offer professional products inquiry, products knowledge train (for agents), smooth goods delivery, excellent customer solution proposals.

What's your available port of Shipment?

Main Port, China

What’s your featured  services?

Our service formula: good quality+ good price+ good service=customer's trust

Where are your Market?

Covering more than 160 countries in the world

 

Q: How does tool and die steel maintain its hardness and wear resistance?
Tool and die steel maintains its hardness and wear resistance through a combination of factors such as its chemical composition, heat treatment, and surface treatments. The steel is typically alloyed with elements like chromium, vanadium, and tungsten, which enhance its hardness and wear resistance properties. Additionally, through heat treatment processes like quenching and tempering, the steel is subjected to controlled heating and cooling cycles, which further contribute to its desired hardness and toughness. Surface treatments like nitriding or coating with materials like titanium nitride can also be applied to improve the wear resistance of the steel. Overall, it is the careful selection of steel composition, precise heat treatment, and appropriate surface treatments that enable tool and die steel to maintain its hardness and wear resistance.
Q: How does special steel contribute to the wear resistance of products?
Special steel contributes to the wear resistance of products in several ways. Firstly, special steel is known for its high strength and hardness, which allows it to withstand heavy loads and resist deformation. This property is crucial in applications where products are subjected to abrasive forces or repetitive stress, such as in machinery parts or cutting tools. Additionally, special steel often contains specific alloying elements that enhance its wear resistance. For example, the addition of chromium can form a protective layer of chromium oxide on the surface of the steel, which acts as a barrier against corrosion and wear. Similarly, the addition of vanadium or molybdenum can increase the steel's hardness and toughness, making it more resistant to wear and fatigue. Moreover, special steel can be heat-treated to further enhance its wear resistance. Through processes like quenching and tempering, the steel's microstructure can be modified to achieve a fine-grained and homogeneous structure. This results in improved hardness and increased resistance to wear, as well as better dimensional stability. In summary, special steel contributes to the wear resistance of products due to its inherent strength and hardness, alloying elements that enhance wear resistance, and the ability to be heat-treated for improved properties. These characteristics make special steel an excellent choice for applications where durability and longevity are crucial.
Q: How does special steel contribute to the automotive fuel efficiency?
Special steel contributes to automotive fuel efficiency in several ways. Firstly, special steel is often used in the construction of lighter and stronger components such as the chassis, body panels, and engine parts. This reduces the overall weight of the vehicle, leading to improved fuel economy. Secondly, special steel can be used in the manufacturing of components like exhaust systems, which are designed to reduce emissions and improve fuel efficiency. Additionally, special steel can also be utilized in the production of more efficient engine designs, such as turbochargers, which enhance the power output while minimizing fuel consumption. Overall, the use of special steel in the automotive industry plays a crucial role in enhancing fuel efficiency and reducing environmental impact.
Q: What are the challenges in welding special steel?
One of the major challenges in welding special steel is its high carbon content, which can lead to the formation of brittle microstructures and increased susceptibility to cracking. Additionally, special steels often have unique alloying elements and compositions, which require precise temperature control and specialized welding techniques to maintain their desired properties. Furthermore, the presence of impurities and contaminants in special steels can cause porosity and other defects during the welding process, requiring thorough pre-weld preparation and stringent quality control measures.
Q: What are the different types of nitriding steel?
There are mainly two types of nitriding steel: gas nitriding steel and plasma nitriding steel.
Q: What are the different certifications available for special steel?
There are several certifications available for special steel, depending on the specific industry and application. Some of the commonly recognized certifications include: 1. ISO 9001: This certification ensures that the special steel manufacturer has implemented and maintained a quality management system that complies with international standards. It demonstrates the company's commitment to consistently providing products that meet customer requirements. 2. ISO 14001: This certification focuses on environmental management and ensures that the special steel manufacturer has implemented environmentally friendly practices in their operations. It demonstrates the company's commitment to reducing their environmental impact. 3. ASME (American Society of Mechanical Engineers) certifications: ASME offers various certifications for special steel used in pressure vessels, boilers, and other applications. These certifications ensure that the special steel meets specific quality and safety standards required by the industry. 4. PED (Pressure Equipment Directive): This certification is required for special steel used in pressure equipment in the European Union. It ensures that the steel meets specific safety and quality requirements. 5. NACE (National Association of Corrosion Engineers) certifications: NACE offers certifications for special steel used in corrosive environments. These certifications ensure that the steel has the necessary resistance against corrosion and can withstand harsh conditions. 6. API (American Petroleum Institute) certifications: API offers certifications for special steel used in the oil and gas industry. These certifications ensure that the steel meets specific quality and performance standards required for various applications in the industry. 7. ASTM (American Society for Testing and Materials) certifications: ASTM offers various certifications for special steel based on specific standards and specifications. These certifications ensure that the steel meets the required mechanical properties, chemical composition, and other criteria. It is important for manufacturers, suppliers, and end-users to consider these certifications when selecting special steel for their specific applications. These certifications provide assurance and confidence in the quality, safety, and performance of the special steel products.
Q: Can special steel be used in the production of hydraulic components?
Yes, special steel can be used in the production of hydraulic components. Special steel possesses superior strength, corrosion resistance, and durability properties, making it suitable for applications in the hydraulic industry. Special steel can withstand high pressure, extreme temperatures, and abrasive environments, ensuring reliable and efficient operation of hydraulic systems.
Q: What are the different heat treatment defects in special steel?
During the heat treatment process of special steel, various defects can occur. Some of the most frequently encountered defects are as follows: 1. Decarburization: This defect arises when the steel's outer layers lose carbon due to exposure to high temperatures in an environment rich in oxygen. The consequence of decarburization is reduced hardness and strength in the treated steel. 2. Quench cracking: Also known as cracking during quenching, this defect emerges when the steel undergoes rapid cooling subsequent to heating. The differential cooling rates can induce internal stresses, resulting in cracks within the material. 3. Distortion: Distortion refers to alterations in the shape or dimensions of the steel during the heat treatment process. It can be caused by uneven heating or cooling, inadequate fixturing, or improper quenching techniques. 4. Soft spots: Soft spots are localized areas of reduced hardness in the treated steel. These spots can occur due to insufficient heating or improper quenching, leading to diminished mechanical strength in those regions. 5. Overheating: Overheating is a defect that occurs when the steel is subjected to excessively high temperatures during the heat treatment process. This can lead to grain growth, reduced toughness, and overall decreased material properties. 6. Case hardening problems: Special steels often undergo case hardening processes, such as carburizing or nitriding, to create a hardened outer layer. However, several defects can arise during these processes, including inadequate or excessive hardening, poor case depth, or uneven distribution of hardness. 7. Residual stresses: Residual stresses are internal stresses that persist in the steel after the heat treatment process. If not properly controlled, these stresses can cause dimensional instability, warping, or even cracking. To prevent or minimize these heat treatment defects, it is crucial to adhere to proper heat treatment procedures. This includes precise temperature control, appropriate cooling rates, and suitable fixturing techniques. Furthermore, the use of high-quality heat treatment equipment, close monitoring of the process, and thorough inspections can aid in detecting and rectifying any potential defects in special steel.
Q: What are the different methods for improving the wear resistance of special steel?
There are several methods that can be employed to enhance the wear resistance of special steel. These methods include: 1. Alloying: By adding specific alloying elements to the steel composition, such as chromium, vanadium, or molybdenum, the wear resistance can be significantly improved. These alloying elements form carbides within the steel matrix, which increase hardness and provide resistance against wear. 2. Heat treatment: Special steels can undergo various heat treatment processes, such as quenching and tempering, to enhance their wear resistance. Quenching involves rapidly cooling the steel from high temperatures to increase hardness, while tempering is performed to relieve internal stresses and improve toughness. 3. Surface coatings: Applying specialized coatings on the surface of the steel can greatly improve wear resistance. Common coating methods include thermal spray coating, electroplating, and physical vapor deposition. These coatings create a protective layer that resists wear and reduces friction. 4. Shot peening: This mechanical surface treatment involves bombarding the steel surface with small spherical particles, called shot, at high velocities. The impact of the shot induces compressive stress on the surface, which enhances the material's resistance to wear and fatigue. 5. Nitriding: This process involves diffusing nitrogen into the surface of the steel at elevated temperatures. Nitrogen forms nitrides, which significantly increase surface hardness and wear resistance. 6. Cryogenic treatment: By subjecting the steel to extremely low temperatures, typically below -100 degrees Celsius (-148 degrees Fahrenheit), the material undergoes a structural transformation that increases its wear resistance. This process helps to refine the grain structure and improve the material's toughness. 7. Grain refinement: By employing methods like severe plastic deformation or specialized casting techniques, the grain size of the steel can be reduced. Smaller grain sizes result in increased hardness and wear resistance due to improved dislocation movement and reduced grain-boundary sliding. It is important to note that the choice of method for improving wear resistance depends on factors such as the specific application, budget, and desired level of improvement. A combination of these methods may also be utilized to achieve optimal wear resistance in special steel.
Q: How does special steel contribute to the aviation industry?
The aviation industry heavily relies on special steel to guarantee the safety, performance, and efficiency of aircraft. Firstly, critical aircraft components like landing gears, engine parts, and structural elements are manufactured using special steel. These components necessitate materials with exceptional strength, durability, and resistance to fatigue and corrosion. Special steel, such as stainless steel or nickel-based alloys, possesses these properties, ensuring the structural integrity and safety of aircraft. Secondly, special steel allows for the development of lightweight aircraft, a crucial requirement in the aviation industry. By employing high-strength alloys, manufacturers can decrease the weight of aircraft components without compromising their structural integrity. This leads to fuel savings, increased range, and enhanced payload capacity, ultimately improving the efficiency of aircraft operations. Additionally, special steel significantly enhances the performance and reliability of aircraft engines. Steel alloys with excellent mechanical properties and resistance to high temperatures are utilized in producing turbine blades, combustion chambers, and exhaust systems. These components endure extreme temperatures and stress levels, enabling engines to operate efficiently and reliably. Furthermore, special steel contributes to the aviation industry by enabling innovative designs and technologies. With continuous advancements in material science, manufacturers are able to develop new steel alloys with improved properties like enhanced resistance to wear, thermal stability, or fatigue resistance. These innovations unlock new possibilities for aircraft design, performance, and fuel efficiency. In conclusion, the aviation industry heavily relies on special steel to ensure the safety, performance, and efficiency of aircraft. Its utilization in critical components, lightweight construction, engine manufacturing, and technological advancements drives the progress of aviation, resulting in safer, more efficient, and more sustainable air travel.

Send your message to us

This is not what you are looking for? Post Buying Request

Similar products

Hot products


Hot Searches

Related keywords