• Prime quality prepainted galvanized steel 665mm System 1
  • Prime quality prepainted galvanized steel 665mm System 2
  • Prime quality prepainted galvanized steel 665mm System 3
  • Prime quality prepainted galvanized steel 665mm System 4
  • Prime quality prepainted galvanized steel 665mm System 5
  • Prime quality prepainted galvanized steel 665mm System 6
Prime quality prepainted galvanized steel 665mm

Prime quality prepainted galvanized steel 665mm

Ref Price:
get latest price
Loading Port:
Tianjin
Payment Terms:
TT OR LC
Min Order Qty:
100 m.t.
Supply Capability:
10000 m.t./month

Add to My Favorites

Follow us:


OKorder Service Pledge

Quality Product, Order Online Tracking, Timely Delivery

OKorder Financial Service

Credit Rating, Credit Services, Credit Purchasing

Construction building material galvanized color prepainted cold

rolled steel coil

 

Prepainted steel sheet is coated with organic layer, which provides higher anti-corrosion property and

a longer lifespan than that of galvanized steel sheets.

 

The base metals for prepainted steel sheet consist of cold-rolled, HDG electro-galvanized and hot-dip

Alu-zinc coated. The finish coats of prepainted steel sheets can be classified into groups as follows:

polyester, silicon modified polyesters, polyvinylidene fluoride, high-durability polyester, etc

Prime quality prepainted galvanized steel 665mm

 

Standard and Grade :

Pre-paint galvanized steel coil



ASTM A755M-03

EN10169:2006

JISG 3312-2012

Commercial quality

                  CS

DX51D+Z

CGCC

 

 

 

Structure steel

SS GRADE 230

S220GD+Z

CGC340

SS GRADE 255

S250GD+Z

CGC400

SS GRADE 275

S280GD+Z

CGC440

SS GRADE 340

S320GD+Z

CGC490

SS GRADE550

S350GD+Z

CGC570


S550GD+Z


Application:

Outdoor

Roof, roof structure, surface sheet of balcony, frame of window, door of garage, rolled shutter door, booth, Persian blinds, cabana, etc

Indoor

Door, isolater, frame of door, light steel structure of house, home electronic appliances, ect.

Specifications

Commodity Name: Prepainted Galvanized Steel Coil

Standard: AISI, ASTM, DIN, GB, JIS   

Grade: TDC52D+Z   

Thickness 0.13-8.0mm  

Width:600mm-1350mm

Zinc Coating:275g/m2

Polyester Coating Thickness:Top and Back coating thickness depend by Buyer Requirement.

Polyester Coating Type:2/2,1/2m,1/2.

Polyester Type: Polyester, silicone modified polyester, high durability polyester (HDP), polyvinylidene fluoride (PVDF)

Unit Roll Weight:5-20tons

Place of Origin Shanghai , China (Mainland)  

Surface Treatment :Color Coated

Manufacture Progress:HRC-CRC-GALVANIZED-COLOR COATED  

Application : Construction, electrical, transportation, steel plant, composite board plant, steel tile factory  

Payment & Shipping Terms:T/T ,L/C, and FOB CHINA 

Minimum Order Quantity: 25Tons  

Packge Type: Moisture-proof paper inner,Steel outside,Bundle by steel rope.

Package in Container : Wood as a foot pad, wire rope reinforcement,PPGI steel coil tied together by steel rope.


Q: How are steel billets used in the production of automotive components?
Automotive components heavily rely on steel billets as a crucial raw material. During the manufacturing process, these billets are heated and then either forged or rolled to form different shapes and sizes, ultimately creating the desired automotive parts. These billets serve as the foundation for producing crucial components such as engine blocks, crankshafts, connecting rods, axles, and suspension parts. Steel's high strength and durability make it the perfect material for these vital components, ensuring the safety and performance of automobiles. Once heated, the steel billets undergo various shaping processes, including hot forging or hot rolling. Hot forging involves applying pressure to the heated billet using a die to achieve the desired shape. This process not only finalizes the component's shape but also enhances its mechanical properties by aligning the steel's grain structure. On the other hand, hot rolling involves passing the heated billet through a series of rolling mills to gradually reduce its thickness and shape it into a specific profile. This method is commonly used for manufacturing long automotive components such as axles or suspension parts. Following the shaping process, the automotive components undergo additional manufacturing steps such as heat treatment, machining, and surface finishing to enhance their strength, precision, and aesthetic appeal. Steel billets offer numerous advantages in automotive component production. Their exceptional mechanical properties, including high strength, toughness, and wear resistance, make them ideal for withstanding the demanding conditions and loads experienced by automotive parts. Moreover, steel's malleability and formability enable manufacturers to create intricate and complex designs, ensuring optimal functionality and performance. In conclusion, steel billets play a crucial role in automotive component production by serving as the raw material that is shaped and formed into various critical parts. Steel's strength, durability, and versatility make it an essential material for ensuring the safety, reliability, and performance of automobiles.
Q: How do steel billets contribute to the manufacturing of kitchen appliances?
Kitchen appliances rely on steel billets as an essential component for their production. These semi-finished steel products, typically rectangular or square in shape, are created through continuous casting. One way in which steel billets contribute to the manufacturing of kitchen appliances is by serving as the primary raw material for various appliance components. Stoves, ovens, refrigerators, and dishwashers require a strong and durable structure, which steel billets provide. Through processes like hot rolling, forging, or extrusion, the billets are transformed into specific parts such as frames, doors, panels, and handles. Steel billets also play a vital role in ensuring the longevity and reliability of kitchen appliances. With its high tensile strength and resistance to corrosion, steel allows manufacturers to create appliances that can withstand daily use and endure for a long time. By using steel billets as the base material, kitchen appliances can handle high temperatures, heavy loads, and harsh environments without compromising their structural integrity. Moreover, steel billets contribute to the aesthetic appeal of kitchen appliances. The smooth and polished surface of steel provides an attractive and modern finish, making appliances visually appealing to consumers. Steel can also be easily manipulated to achieve different shapes and designs, allowing manufacturers to create sleek and stylish appliances that complement the overall kitchen decor. Additionally, steel billets possess excellent heat conductivity properties, which is crucial for kitchen appliances like stoves and ovens. The even distribution of heat throughout the appliance ensures efficient cooking and baking, guaranteeing that food is cooked thoroughly and evenly. In conclusion, steel billets are indispensable in the manufacturing of kitchen appliances due to their strength, durability, aesthetics, and heat conductivity properties. Without these billets, it would be challenging to produce high-quality, reliable, and visually appealing kitchen appliances that meet consumer demands.
Q: Can steel billets be painted or coated for decorative purposes?
Steel billets can indeed be painted or coated to achieve decorative purposes. By painting or coating steel billets, not only is their appearance improved, but they are also safeguarded against corrosion and other environmental factors. A variety of paints and coatings, including epoxy, powder coating, and metallic finishes, can be utilized to achieve the desired decorative effect. These coatings can be applied to steel billets using methods such as spray painting, electrostatic coating, or hot-dipping. To ensure a strong bond and long-lasting decorative finish, it is crucial to properly prepare the surface of the steel billets before applying the paint or coating.
Q: What are the specifications for tool steel billets used in the tooling industry?
The tooling industry typically requires tool steel billets to meet specific specifications in order to achieve optimal performance and durability. These specifications encompass various aspects: 1. Alloy Composition: Tool steel billets are composed of specific alloys that provide high hardness, wear resistance, and toughness. Common elements in tool steel include carbon, chromium, vanadium, molybdenum, and tungsten. 2. Hardness: Heat treatment is applied to tool steel billets to attain the desired hardness level, often measured using Rockwell hardness (HRC). The required hardness depends on the tool's application and type. 3. Size and Shape: Tool steel billets are available in different sizes and shapes, such as rectangular or round bars, to accommodate diverse tooling requirements. The dimensions of the billets are selected based on the size and complexity of the intended tool. 4. Surface Finish: Tool steel billets must possess a smooth and clean surface finish to facilitate machining and reduce the risk of defects or flaws in the final tooling product. 5. Tolerance: Billets should be manufactured with precise dimensional tolerances to ensure consistency during the machining and tooling processes. This aids in achieving accurate tool dimensions and minimizing waste. 6. Homogeneity: Tool steel billets must exhibit uniform chemical composition and microstructure throughout to ensure consistent mechanical properties and performance in the final tooling products. 7. Heat Treatment Properties: Billets should possess favorable heat treatment properties, including the ability to be hardened and tempered. This enhances their strength, toughness, and wear resistance. 8. Machinability: Tool steel billets should have good machinability to enable efficient shaping and forming processes during tool manufacturing. This encompasses considerations for cutting forces, chip formation, and surface finish. It is important to note that the specific specifications for tool steel billets may vary depending on the application and type of tool being produced. Manufacturers and tooling experts often collaborate closely to determine the most suitable tool steel specifications for each specific tooling requirement.
Q: Can steel billets be welded together?
Yes, steel billets can be welded together. Welding is a common method used to join steel billets by heating the surfaces to a molten state and then allowing them to cool and solidify, resulting in a strong and continuous joint.
Q: How do steel billets contribute to the manufacturing of construction machinery?
Steel billets play a crucial role in the manufacturing of construction machinery. These cylindrical or square bars of steel are the primary raw material used in the production of various components and parts for construction machinery. Firstly, steel billets are used to create the structural frame of construction machinery. The high strength and durability of steel make it an ideal material for ensuring the structural integrity of heavy machinery. Steel billets are shaped and welded together to form the sturdy frame, providing the necessary support and stability to the equipment. Additionally, steel billets are used to manufacture critical components such as gears, shafts, and axles. These components require high tensile strength and resistance to wear and tear, which can be achieved using steel billets. By machining, forging, or casting steel billets into the desired shape, these components can withstand the heavy loads and harsh operating conditions in the construction industry. Moreover, steel billets are used to produce buckets, blades, and cutting edges for construction machinery. These components are subjected to extreme forces and abrasion during excavation, grading, and other construction activities. Steel billets, with their excellent hardness and toughness, ensure that these components can withstand the demanding conditions and perform effectively. Furthermore, steel billets are essential in the production of hydraulic cylinders and pistons. These components are responsible for generating the force required for lifting, pushing, and pulling heavy loads in construction machinery. Steel billets are machined and shaped to create the cylinder bodies and pistons, ensuring the necessary strength and precision for efficient hydraulic operations. In summary, steel billets are indispensable in the manufacturing of construction machinery. They provide the strength, durability, and wear resistance required for the various components and parts of construction equipment. Steel billets contribute to the overall performance and reliability of construction machinery, ensuring that they can withstand the demanding conditions and heavy workloads encountered in the construction industry.
Q: How are steel billets used in the production of bars and rods?
Bars and rods rely on steel billets as a crucial raw material. These billets, typically produced through continuous casting, are solid blocks of semi-finished steel with a square or rectangular shape. To convert steel billets into bars and rods, multiple steps are involved. Initially, the billets are heated in a furnace to a specific temperature, making them more malleable. This heating process, known as soaking, ensures a uniform composition and enhanced plasticity of the steel. Once the billets reach the desired temperature, they undergo hot rolling, which involves passing them through a series of rollers. The rollers gradually decrease the cross-sectional area of the billets, elongating them into long and slender shapes. This hot rolling process refines the grain structure, aligns the crystalline structure, and enhances the mechanical properties of the steel. Following hot rolling, additional processes like cooling, straightening, and cutting are often applied to the bars and rods. Cooling is vital to prevent brittleness, while straightening guarantees the desired shape and dimensions of the final product. Ultimately, the bars and rods are cut into specific lengths, ready for use in various industries such as construction, automotive, and manufacturing. In conclusion, steel billets serve as the foundation for the production of bars and rods. Through reheating, hot rolling, and subsequent treatments, these billets are transformed into durable and high-quality bars and rods, widely utilized across different applications.
Q: How are steel billets tested for strength?
To ensure the quality and appropriateness of steel billets for different uses, they undergo various strength tests. One commonly employed method is the tensile strength test, which involves applying a controlled pulling force to a sample of the billet until it breaks. The maximum force exerted during this test determines the billet's tensile strength. Another crucial test is the hardness test, which evaluates the billet's resistance to indentation. This procedure utilizes a hardness tester that applies a known force to the billet's surface and measures the resulting indentation's depth. The hardness value obtained from this test aids in determining the billet's strength and its ability to endure wear and tear. Additionally, steel billets may also undergo impact testing, in which a pendulum strikes the billet, measuring the energy absorbed during fracture. This test assesses the billet's toughness and its capacity to withstand sudden shocks or impacts. Moreover, ultrasonic testing is frequently conducted to identify any hidden flaws or inconsistencies within the billet. This non-destructive testing method employs high-frequency sound waves to detect internal defects like cracks, voids, or inclusions that may weaken the billet and jeopardize its strength. By combining these tests with other quality control measures, steel billets are thoroughly examined for strength and suitability in various industrial applications, including construction, automotive, and manufacturing.
Q: What is the average weight of a steel billet?
The average weight of a steel billet can vary depending on its size and dimensions. However, a typical steel billet can weigh anywhere between 1,000 kilograms (2,204 pounds) to 5,000 kilograms (11,023 pounds). These weights are typical for industrial-grade steel billets used in various manufacturing processes such as forging, rolling, and extrusion. It's important to note that the weight of a steel billet can also be customized based on specific requirements and industry standards.
Q: What are the different surface finishing techniques used for steel billets?
There are several surface finishing techniques that are commonly used for steel billets. These techniques are employed to enhance the appearance, improve corrosion resistance, and provide a protective coating to the steel billets. Some of the different surface finishing techniques used for steel billets are: 1. Hot Rolling: This technique involves passing the steel billets through a series of hot rollers, which not only shapes the billets but also creates a smooth surface finish. Hot rolling is commonly used to produce steel plates, sheets, or structural shapes. 2. Cold Rolling: Cold rolling is similar to hot rolling, but it is performed at room temperature. This technique helps to achieve a smoother surface finish, increased dimensional accuracy, and improved mechanical properties of the steel billets. 3. Shot Blasting: Shot blasting is a process where steel billets are bombarded with small metallic or non-metallic particles at high velocity. This technique helps to remove scale, rust, and other contaminants from the billet's surface, resulting in a clean and uniform appearance. 4. Pickling: Pickling involves immersing the steel billets in an acid solution to remove oxides, scale, and rust from the surface. This technique helps to achieve a clean and smooth surface finish, ready for further processing or coating. 5. Galvanizing: Galvanizing is a popular surface finishing technique that involves coating the steel billets with a layer of zinc. This coating provides excellent corrosion resistance and protects the steel from environmental factors. Galvanizing can be done through hot-dip galvanizing, electro-galvanizing, or mechanical galvanizing methods. 6. Painting: Painting is often used as a surface finishing technique for steel billets. It involves applying a layer of paint or protective coating to the surface, which not only enhances the appearance but also provides protection against corrosion and weathering. 7. Passivation: Passivation is a chemical process used to remove free iron or iron oxides from the surface of steel billets. This process helps to improve the corrosion resistance of the steel and leaves a clean and passive surface. 8. Polishing: Polishing involves using abrasive materials or compounds to smoothen the surface of the steel billets. This technique is commonly used to achieve a high gloss or mirror-like finish, enhancing the aesthetic appeal of the steel. Each of these surface finishing techniques offers its own advantages and is chosen based on the specific requirements of the steel billets, such as appearance, corrosion resistance, and functionality.

Send your message to us

This is not what you are looking for? Post Buying Request

Similar products

Hot products


Hot Searches

Related keywords