• Prime quality prepainted galvanized steel 690mm System 1
  • Prime quality prepainted galvanized steel 690mm System 2
  • Prime quality prepainted galvanized steel 690mm System 3
  • Prime quality prepainted galvanized steel 690mm System 4
  • Prime quality prepainted galvanized steel 690mm System 5
  • Prime quality prepainted galvanized steel 690mm System 6
Prime quality prepainted galvanized steel 690mm

Prime quality prepainted galvanized steel 690mm

Ref Price:
get latest price
Loading Port:
Tianjin
Payment Terms:
TT OR LC
Min Order Qty:
100 m.t.
Supply Capability:
10000 m.t./month

Add to My Favorites

Follow us:


OKorder Service Pledge

Quality Product, Order Online Tracking, Timely Delivery

OKorder Financial Service

Credit Rating, Credit Services, Credit Purchasing

Construction building material galvanized color prepainted cold

rolled steel coil

 

Prepainted steel sheet is coated with organic layer, which provides higher anti-corrosion property and

a longer lifespan than that of galvanized steel sheets.

 

The base metals for prepainted steel sheet consist of cold-rolled, HDG electro-galvanized and hot-dip

Alu-zinc coated. The finish coats of prepainted steel sheets can be classified into groups as follows:

polyester, silicon modified polyesters, polyvinylidene fluoride, high-durability polyester, etc

Prime quality prepainted galvanized steel 690mm

 

Standard and Grade :

Pre-paint galvanized steel coil



ASTM A755M-03

EN10169:2006

JISG 3312-2012

Commercial quality

                  CS

DX51D+Z

CGCC

 

 

 

Structure steel

SS GRADE 230

S220GD+Z

CGC340

SS GRADE 255

S250GD+Z

CGC400

SS GRADE 275

S280GD+Z

CGC440

SS GRADE 340

S320GD+Z

CGC490

SS GRADE550

S350GD+Z

CGC570


S550GD+Z


Application:

Outdoor

Roof, roof structure, surface sheet of balcony, frame of window, door of garage, rolled shutter door, booth, Persian blinds, cabana, etc

Indoor

Door, isolater, frame of door, light steel structure of house, home electronic appliances, ect.

Specifications

Commodity Name: Prepainted Galvanized Steel Coil

Standard: AISI, ASTM, DIN, GB, JIS   

Grade: TDC52D+Z   

Thickness 0.13-8.0mm  

Width:600mm-1350mm

Zinc Coating:275g/m2

Polyester Coating Thickness:Top and Back coating thickness depend by Buyer Requirement.

Polyester Coating Type:2/2,1/2m,1/2.

Polyester Type: Polyester, silicone modified polyester, high durability polyester (HDP), polyvinylidene fluoride (PVDF)

Unit Roll Weight:5-20tons

Place of Origin Shanghai , China (Mainland)  

Surface Treatment :Color Coated

Manufacture Progress:HRC-CRC-GALVANIZED-COLOR COATED  

Application : Construction, electrical, transportation, steel plant, composite board plant, steel tile factory  

Payment & Shipping Terms:T/T ,L/C, and FOB CHINA 

Minimum Order Quantity: 25Tons  

Packge Type: Moisture-proof paper inner,Steel outside,Bundle by steel rope.

Package in Container : Wood as a foot pad, wire rope reinforcement,PPGI steel coil tied together by steel rope.


Q: Can steel billets be used for making cutlery?
Yes, steel billets can be used for making cutlery. Steel billets are the raw material used in the production of various steel products, including cutlery. The billets are heated and then shaped into desired forms, such as knives, forks, or spoons, through processes like forging or casting. The resulting steel cutlery is known for its strength, durability, and ability to hold a sharp edge. However, it is important to note that the specific type of steel used and the manufacturing processes play a significant role in determining the quality and characteristics of the cutlery.
Q: What are the main steel billet producing countries?
The main steel billet producing countries are China, India, Russia, Japan, and the United States.
Q: Can steel billets be customized in terms of shape and size?
Yes, steel billets can be customized in terms of shape and size. Steel billets are semi-finished products that are typically rectangular in shape and are used as raw material for various manufacturing processes. However, they can be altered to meet specific requirements by undergoing a process known as billet rolling or cross-rolling. During this process, the steel billets are passed through a series of specially designed rolls that apply pressure and force to reshape them. This allows for the customization of the billets into different shapes and sizes, such as square, round, or hexagonal, based on the desired end product. Additionally, the size of the steel billets can also be customized. The initial dimensions of the billets can be adjusted by either increasing or decreasing their length, width, and height. This flexibility in customization enables manufacturers to produce steel billets that best suit their specific production needs. In conclusion, steel billets can indeed be customized in terms of both shape and size through the process of billet rolling. This allows manufacturers to adapt the billets to their desired specifications, enabling them to create a wide range of products using steel as a raw material.
Q: Can steel billets be recycled?
Yes, steel billets can be recycled. Steel is a highly recyclable material, and the recycling process for steel billets is relatively straightforward. When steel billets, which are typically produced through a casting process, are no longer needed or have reached the end of their lifecycle, they can be recycled and transformed into new steel products. The recycling process begins with the collection and sorting of the steel billets. They are then transported to a recycling facility where they are melted down in a furnace. Once melted, impurities are removed, and the resulting molten steel is formed into new billets or other steel products through various shaping and casting techniques. Recycling steel billets not only helps to conserve natural resources and reduce waste but also has significant environmental benefits. The recycling process requires less energy and emits fewer greenhouse gases compared to the production of steel from raw materials. Additionally, recycling steel helps to reduce the demand for mining iron ore, which can have detrimental effects on the environment. Overall, steel billets can be effectively recycled, allowing for the sustainable and responsible use of this versatile material.
Q: What is the process of heat treatment for steel billets?
The process of heat treatment for steel billets involves subjecting the billets to controlled heating and cooling cycles to alter their mechanical properties. This process is essential in increasing the hardness, strength, and toughness of the steel billets, making them suitable for various industrial applications. The heat treatment process begins with the heating stage, where the steel billets are heated to a specific temperature range. This temperature is typically above the critical point of the steel, which allows for the transformation of its microstructure. The heating can be done using various methods, including electric furnaces, gas furnaces, or induction heating. Once the desired temperature is reached, the billets are held at that temperature for a specified amount of time to ensure the uniformity of the heat distribution throughout the billet. This stage is known as soaking or holding, and it allows for the homogenization of the microstructure. After the soaking stage, the billets are subjected to cooling, which is equally important as the heating stage. The cooling rate is carefully controlled to achieve the desired properties. The cooling can be done through various methods, such as air cooling, oil quenching, or water quenching. Each method provides different cooling rates and results in different material properties. During the cooling stage, the steel undergoes a phase transformation, which results in the formation of different microstructures. For example, rapid cooling through water quenching can lead to the formation of martensite, a hard and brittle microstructure, while slower cooling can result in the formation of pearlite, a softer and ductile microstructure. Once the cooling is complete, the steel billets are often subjected to additional processes such as tempering or annealing. Tempering involves reheating the steel to a specific temperature and holding it there for a certain period, followed by controlled cooling. This process reduces the brittleness of the steel and improves its toughness and ductility. Annealing is another heat treatment process that involves heating the steel to a specific temperature and then slowly cooling it. This process is used to relieve internal stresses, refine the grain structure, and enhance the machinability of the steel. Overall, the process of heat treatment for steel billets involves carefully controlled heating, soaking, cooling, and sometimes additional processes to achieve the desired mechanical properties. This process is crucial in enhancing the performance and durability of steel billets, making them suitable for various industrial applications such as construction, automotive, and machinery.
Q: Can steel billets be used for structural applications?
Yes, steel billets can be used for structural applications. Steel billets are semi-finished products commonly used in the manufacturing of various structural components such as beams, columns, and rods. These billets can be further processed through rolling or forging to create the desired shapes and sizes required for structural applications. The high strength and durability of steel make it a popular choice for constructing buildings, bridges, and other infrastructure projects.
Q: What is the role of steel billets in the construction of underground tunnels?
The construction of underground tunnels heavily relies on steel billets, which are cylindrical steel bars. These bars act as the primary raw material for manufacturing various structural components that are crucial in guaranteeing the stability and safety of the tunnel. One significant use of steel billets is in the production of rebar, also known as reinforcing bar. Rebars are inserted into the concrete walls and floors of the tunnel to provide tensile strength and prevent cracking or collapsing under the immense pressure exerted by the surrounding soil or water. These steel bars reinforce the concrete, making it more durable and resistant to deformation, ultimately enhancing the overall structural integrity of the tunnel. Moreover, steel billets are also utilized to create other essential tunnel components, including tunnel segments and steel arches. Tunnel segments are precast concrete elements that form the lining of the tunnel, often incorporating steel reinforcement for added strength. On the other hand, steel arches are employed in constructing tunnel roofs to offer extra support and stability. Additionally, steel billets are employed in the fabrication of various tunnel reinforcement systems like rock bolts and ground anchors. These systems help secure loose or unstable rock formations, preventing them from collapsing and jeopardizing the stability of the tunnel. Steel billets are also used in manufacturing tunnel supports such as steel ribs and beams, which provide additional strength and rigidity to the tunnel structure. In conclusion, steel billets are critical in the construction of underground tunnels. By being transformed into rebar, tunnel segments, steel arches, and reinforcement systems, they play a vital role in ensuring the structural integrity, stability, and safety of tunnels, ultimately facilitating efficient and secure transportation networks underground.
Q: What are the different types of defects that can occur in steel billets?
Steel billets can have various types of defects, which may arise during manufacturing or due to external factors. Common defects are as follows: 1. Surface defects: Scratches, pits, scabs, scale, and cracks can be found on the outer surface of the billet. These defects occur because of mishandling, improper cooling, or contamination during manufacturing. 2. Internal defects: Voids, porosity, inclusions, and segregation are defects that exist within the billet body and are not visible on the surface. They occur due to improper solidification, incorrect casting, or impurities in the steel. 3. Dimensional defects: When the billet fails to meet the desired dimensions or tolerances, dimensional defects arise. These defects include variations in length, width, thickness, or straightness. Improper rolling, uneven cooling, or equipment misalignment can cause such defects. 4. Mechanical defects: The mechanical properties of the steel billet are affected by these defects. They can include improper grain structure, low hardness, brittleness, or poor toughness. Mechanical defects occur due to improper heat treatment, incorrect alloy composition, or inadequate rolling processes. 5. Weld defects: For welded billets, defects related to the welding process can occur. Lack of fusion, incomplete penetration, porosity, or cracks in the weld zone are common weld defects. Improper welding parameters, inadequate preparation, or contamination during the welding process can cause such defects. To ensure the quality and integrity of steel billets, it is crucial to detect and address these defects. Various inspection techniques, such as visual inspection, ultrasonic testing, magnetic particle testing, or radiographic testing, can be employed to identify and classify these defects.
Q: How are steel billets used in the manufacturing of agricultural machinery?
Agricultural machinery manufacturing heavily relies on steel billets as an indispensable element. These semi-finished steel products serve as the primary raw material for a wide range of parts and components used in agricultural machinery. The manufacturing process extensively utilizes steel billets for forging and casting purposes. Forging involves heating the billets to high temperatures and then shaping them using mechanical pressure. On the other hand, casting entails pouring molten metal into a mold. Both techniques enable the creation of intricate and long-lasting components, which are crucial for agricultural machinery. Steel billets find application in the production of various parts in agricultural machinery, including engine components, transmission gears, axles, and hydraulic cylinders. These parts necessitate exceptional strength, durability, and resistance to wear, all of which are provided by steel billets. Moreover, the high tensile strength of steel ensures that the machinery can endure the demanding conditions encountered in agricultural operations. Furthermore, steel billets are instrumental in the manufacture of frames and chassis for agricultural machinery. The frames must possess robustness to support weight and withstand the stress and vibrations experienced during operation. Steel billets enable the creation of sturdy and rigid frames, thereby ensuring the longevity and structural integrity of the machinery. Additionally, steel billets are employed in the production of cutting and harvesting tools, such as blades, discs, and plowshares. The exceptional hardness and sharpness of steel make it an ideal material for these tools, facilitating efficient and precise agricultural operations. In conclusion, steel billets occupy a pivotal role in the manufacturing of agricultural machinery. Their versatility, strength, and durability render them suitable for diverse components and parts, ensuring that the machinery can endure the demanding conditions encountered in agricultural operations and perform optimally.
Q: What are the common surface defects found in steel billets?
Some common surface defects found in steel billets are scale, cracks, laps, seams, and surface decarburization.

Send your message to us

This is not what you are looking for? Post Buying Request

Similar products

Hot products


Hot Searches

Related keywords