• Hot Rolled Square Steel Billet 3SP Standard 195mm System 1
  • Hot Rolled Square Steel Billet 3SP Standard 195mm System 2
  • Hot Rolled Square Steel Billet 3SP Standard 195mm System 3
  • Hot Rolled Square Steel Billet 3SP Standard 195mm System 4
  • Hot Rolled Square Steel Billet 3SP Standard 195mm System 5
  • Hot Rolled Square Steel Billet 3SP Standard 195mm System 6
Hot Rolled Square Steel Billet 3SP Standard 195mm

Hot Rolled Square Steel Billet 3SP Standard 195mm

Ref Price:
get latest price
Loading Port:
Shanghai
Payment Terms:
TT OR LC
Min Order Qty:
2000 m.t.
Supply Capability:
10000 m.t./month

Add to My Favorites

Follow us:


OKorder Service Pledge

Quality Product, Order Online Tracking, Timely Delivery

OKorder Financial Service

Credit Rating, Credit Services, Credit Purchasing

Structure of Hot Rolled Square Steel Billet 3SP Standard 195mm  

 Hot Rolled Square Steel Billet 3SP Standard 195mm

Description of Hot Rolled Square Steel Billet 3SP Standard 195mm  

PPGI is made by cold rolled steel sheet and galvanized steel sheets as baseplate,  through the surface pretreatment (degreasing, cleaning, chemical conversion processing), coated by the method of continuous coatings (roller coating method), 

and after roasting and cooling. Zinc coating: Z60, Z80, Z100, Z120, Z180, Z275, G30, G60, G90
Alu-zinc coating: AZ60, AZ80, AZ100, AZ120, AZ180, G30, G60, G90 

 

Hot Rolled Square Steel Billet 3SP Standard 195mm

Main Feature of Hot Rolled Square Steel Billet 3SP Standard 195mm  

1) Excellent corrosion resistance: The zinc layer provides a good protection of Pre-painted Galvanizeed Steel Sheet.
2) High heat resistance: The reflective surface of the material aids in efficiently reflecting the sunlight away and in turn reducing the amount of heat transmitted. The thermal reflectivity converts into energy savings.
3) Aesthetics: Pre-Painted Galvanized steel sheet is available in plethora of patterns and multiple sizes as per the requirements that given by our customers.
4) Versatility: can be used in the various areas.
Standard seaworthy export packing: 3 layers of packing, inside is kraft paper, water plastic film is in the middle and outside GI steel sheet to be covered by steel strips with lock, with inner coil sleeve.

 

Applications of Hot Rolled Square Steel Billet 3SP Standard 195mm 

1) Automotive bodies: filters, fuel tanks, etc.

2) Construction materials: roofings, welding pipes,

3) Electric and electronic appliances: computer cans, etc.

4) Steel cans: containers, etc.

5) Steel furniture: washing machines, refrigerators, microwaves, etc.

6) Drums

7) Office equipment: printer, recorders, etc.

8) Motors and transformers

 Hot Rolled Square Steel Billet 3SP Standard 195mm

Specifications of Hot Rolled Square Steel Billet 3SP Standard 195mm  

Classified symbolYield Point Minimum N/mm2Tensile Strength MinimumElongation Minimum %Application
N/mm2Nominal Thickness mm (t)
JISYogic
0.25-0.40.4-0.60.6-1.01.0-1.6
G3312specification
CGCCCGCC-205-270-20-21-24-24Commercial
CGCDCGCD---270---273132Drawing
---CG34024534020202020Structural
CGC400CG40029540016171818Structural
CGC440CG44033544014151618Structural
CGC490CG49036549012131416Structural
CGC570CG570560570------------Structural









ASTM DesignationYield Point MinimumTensile Strength MinimumElongation Minimum %Application
Q/BQB 445-2004(China standard)ASM A653/A653MJISG 3312
ksi(MPa)ksi(MPa)
TDC51D+Z(CS TYPE A+Z)CGCC
A653(M)-99 CS TYPE A,B,C---------Commercial
TDC52D+Z
CGCD
A653(M)-99 FS---------Lock Forming
TS250GD+Z(G250+Z)-
A653(M)-99 DS---------Drawing
TS300GS+Z(G300+Z)CGC 400
A653(M)-99 SS Grade33(230)33(230)45(310)20Structural
TS350GD+Z(G350+Z)CGC490
A653(M)-99 SS Grade37(255)37(255)52(360)18Structural
TS550GD+Z(G550+Z)CGC570
A653(M)-99 SS Grade40(275)40(275)55(380)16Structural



A653(M)-99 SS Grade50(345)50(345)65(450)12Structural



A653(M)-99 SS Grade80(550)80(550)82(570)---Structural



FAQ of Hot Rolled Square Steel Billet 3SP Standard 195mm  

We have organized several common questions for our clients,may help you sincerely: 

1. How Can I Visit There?
  Our company is located in Tianjin City, China, near Beijing. You can fly to Tianjin Airport Directly. All our clients, from home or aboard, are warmly   welcome to visit us!  
2. How Can I Get Some Sample?
  We are honored to offer you sample.  
3. Why choose CNBM?
  1, ISO, BV, CE, SGS approved.
  2, Competitive price and quality. 
  3, Efficient service team online for 24 hours. 
  4, Smooth production ability(50000tons/month) .
  5, quick delivery and standard exporting package. 
  6, Flexible payment with T/T, L/C, Paypal, Kunlun bank, etc.

Q:What is the role of steel billets in the construction of offshore platforms?
The construction of offshore platforms heavily relies on steel billets, as they play an essential role in this process. Offshore platforms are enormous structures situated in the open sea, used for extracting oil or gas from beneath the ocean floor. Due to the demanding environmental conditions and the paramount importance of safety and durability, steel billets are extensively utilized in their construction. One of the key functions of steel billets is to serve as the primary material for fabricating different components of offshore platforms. Billets are large, semi-finished steel products typically employed as starting materials in the production of other steel products. They are cast into specific shapes, often square or rectangular, and possess a solid cross-section. Offshore platforms necessitate steel with exceptional strength, corrosion resistance, and impact toughness to withstand the challenging conditions they face, including strong waves, harsh weather, and extreme temperatures. Steel billets are frequently made from high-strength alloyed steels, providing superior mechanical properties and corrosion resistance. These billets are further processed to manufacture various structural elements of offshore platforms, such as beams, columns, braces, and other support structures. These components must have the ability to bear the weight of the platform itself, as well as endure the forces generated by ocean waves, wind, and the extraction process. Additionally, steel billets are also utilized in the production of pipes and tubes, which are crucial for transporting oil and gas from beneath the seabed to the platform or to the shore. These pipes must possess strength, durability, and corrosion resistance to ensure the secure and efficient flow of hydrocarbons. To summarize, steel billets act as the fundamental building blocks for constructing offshore platforms. They provide the raw material necessary for fabricating various structural components, guaranteeing the strength, durability, and safety of these massive structures in the challenging offshore environment.
Q:What are the advantages of using steel billets in construction?
There are several advantages to using steel billets in construction. Firstly, steel billets are highly durable and have a high strength-to-weight ratio, making them ideal for withstanding heavy loads and structural demands. Additionally, steel billets can be easily molded and shaped into various forms, allowing for flexibility and customization in construction projects. Furthermore, steel billets are resistant to corrosion and can withstand harsh weather conditions, ensuring longevity and reduced maintenance costs. Lastly, steel billets are recyclable, making them an environmentally friendly choice for construction materials.
Q:What are the different types of steel billet rolling defects?
There are several types of steel billet rolling defects that can occur during the rolling process. These defects can negatively impact the quality and integrity of the finished product. Some of the most common types of steel billet rolling defects include: 1. Surface cracks: These are small cracks that appear on the surface of the billet. They can occur due to improper cooling or excessive rolling pressure. Surface cracks can compromise the strength and durability of the steel. 2. Center cracks: Center cracks occur in the inner core of the billet. They are usually caused by improper temperature control during the rolling process. Center cracks can lead to structural weaknesses and reduced performance of the steel. 3. Scalloping: Scalloping refers to the formation of shallow depressions or grooves on the surface of the billet. It usually occurs due to uneven or improper rolling pressure distribution. Scalloping can affect the appearance and surface quality of the steel. 4. Lamination: Lamination defects involve the separation of layers within the billet. They can occur due to the presence of impurities or inclusions in the steel, as well as improper heating or rolling conditions. Lamination defects can weaken the steel and increase the risk of failure. 5. Wavy edges: Wavy edges occur when the edges of the billet become uneven or distorted during the rolling process. This can be caused by improper alignment or uneven pressure distribution. Wavy edges can affect the dimensional accuracy and overall quality of the steel. 6. Surface defects: Surface defects include scratches, pits, or other imperfections on the surface of the billet. They can occur due to inadequate cleaning or handling procedures, as well as improper rolling conditions. Surface defects can impact the appearance and surface quality of the steel. Overall, these steel billet rolling defects can have significant implications for the quality, performance, and safety of the finished product. It is important for manufacturers to closely monitor the rolling process and implement proper quality control measures to minimize the occurrence of these defects.
Q:What are the main challenges in the production of steel billets?
The main challenges in the production of steel billets include maintaining consistent quality and dimensional accuracy, ensuring proper heat treatment and cooling processes, minimizing defects and surface imperfections, managing energy consumption and environmental impact, and meeting the growing demand for sustainable and cost-effective production methods. Additionally, the industry faces challenges related to raw material availability and cost fluctuations, as well as competition from alternative materials and technologies.
Q:What are the main factors affecting the surface finish of steel billets?
Several key factors can be attributed to the surface finish of steel billets. Firstly, the quality and cleanliness of the raw materials used in the steelmaking process play a significant role. Surface defects and imperfections can occur if there are impurities or contaminants in the raw materials. Secondly, the manufacturing process's processing parameters directly impact the surface finish. Factors like temperature, speed, and pressure can affect the formation of scale, oxidation, and other surface abnormalities. Excessive scaling can result from high temperatures, while inadequate scale removal can occur due to insufficient temperature control. Furthermore, the surface finish of steel billets is influenced by the type and condition of the equipment used for production. Abrasions, scratches, or other defects in the machinery can transfer onto the billets, affecting their surface quality. Regular maintenance and proper upkeep of the machinery are crucial to ensure a smooth and defect-free surface finish. Moreover, the choice and application of lubricants and coatings during the production process also impact the surface finish. These substances protect the billets from oxidation and reduce friction. However, incorrect application or the use of the wrong lubricant can lead to uneven coating, streaking, or other surface irregularities. Lastly, the handling and storage of steel billets after production can affect their surface finish. Mishandling, improper storage conditions, or exposure to moisture, chemicals, or contaminants can all contribute to surface defects and deterioration. In conclusion, the surface finish of steel billets is influenced by the quality of raw materials, processing parameters, equipment condition, lubricant and coating application, and proper handling and storage. By closely monitoring and optimizing these factors, manufacturers can achieve a high-quality surface finish that meets the desired specifications and requirements.
Q:How are steel billets used in the production of wind turbine towers?
Steel billets play a crucial role in the production of wind turbine towers. These billets, which are essentially semi-finished steel products, are used as the raw material in the manufacturing process of wind turbine towers. Firstly, steel billets are carefully selected based on their specific properties such as strength, durability, and corrosion resistance. These properties are vital as wind turbine towers need to withstand strong winds, harsh weather conditions, and long-term exposure to environmental elements. Once the appropriate steel billets are chosen, they undergo a series of manufacturing processes. These processes often include heating, rolling, and shaping the billets into the desired form for wind turbine towers. Heating the steel billets to high temperatures makes them malleable and easier to shape. After the heating process, the steel billets are rolled into long cylindrical shapes, resembling the final structure of the wind turbine tower. These rolled billets are then forged and welded together to form seamless tower sections. The welding process ensures the structural integrity and stability of the tower. Furthermore, steel billets are also used in the construction of the tower's foundation. Large steel billets are embedded deep into the ground to provide a stable base for the tower. This helps to anchor the tower securely, preventing any potential movements or instability. Overall, steel billets are fundamental in the production of wind turbine towers as they provide the necessary strength and durability required for these structures. Without steel billets, it would be nearly impossible to construct wind turbine towers that can withstand the demanding conditions they are exposed to.
Q:How are steel billets classified based on their chemical composition?
Different grading systems can be used to classify steel billets based on their chemical composition. One commonly used method involves categorizing the billets into three main groups: low carbon steel billets, medium carbon steel billets, and high carbon steel billets. Low carbon steel billets typically contain less than 0.25% carbon and are known for their excellent ductility and weldability. They are often used in applications that require good formability and low strength, such as construction materials and automotive components. Medium carbon steel billets, on the other hand, have a carbon content ranging from 0.25% to 0.60%. These billets offer improved strength and hardness compared to low carbon steel billets and are commonly used in applications that require higher strength, such as machinery parts, shafts, and gears. High carbon steel billets have a carbon content greater than 0.60% and are recognized for their exceptional strength and hardness. They are commonly used in applications that demand high wear resistance, such as cutting tools, springs, and knives. In addition to carbon content, the presence of other chemical elements in the steel billets can also impact their classification. Elements like chromium, nickel, and molybdenum, known as alloying elements, can enhance the properties of the steel, such as corrosion resistance or heat resistance. Steel billets can therefore be further classified based on the specific alloying elements present and their concentrations. Overall, classifying steel billets based on their chemical composition allows for a better understanding and selection of the appropriate material for specific applications. This ensures that the desired properties and performance of the final product are achieved.
Q:What are the main factors that influence the strength of steel billets?
The main factors that influence the strength of steel billets include the chemical composition of the steel, the heat treatment process, the presence of impurities and alloying elements, the cooling rate during the solidification process, and the mechanical processing and deformation of the billets.
Q:20 what is the difference between manganese silicon steel billet and Q235 billet?
In brief, the ingredients are different and the uses are different.20 manganese silicon steel billet for high strength steel,Q235 billet is almost the most common steel, requiring the lowest.
Q:Are steel billets subject to any regulations or certifications?
Steel billets must adhere to numerous regulations and certifications to guarantee their production, quality, and safety standards are met. The ISO 9001 certification, an internationally recognized standard for quality management systems, is one of the most common certifications for steel billets. This certification ensures that the manufacturing process of steel billets follows consistent quality control measures, from sourcing raw materials to final production. Steel billets may also need to obtain industry-specific certifications, depending on their intended use. For example, if the steel billets are intended for construction projects, they must comply with certifications such as ASTM standards or European EN standards. These certifications define the necessary mechanical properties, chemical composition, and other specifications that steel billets must meet to ensure they are suitable for construction purposes. In addition, governmental bodies or industry associations may impose regulations on steel billets. These regulations can include safety standards, environmental regulations, and compliance with trade policies. For instance, steel billet producers may need to comply with regulations regarding emissions, waste management, or occupational health and safety. In conclusion, various regulations and certifications are in place to ensure the quality, safety, and compliance with industry standards of steel billets. These certifications and regulations are crucial for maintaining the integrity of steel billets and ensuring they are suitable for various applications.

1. Manufacturer Overview

Location
Year Established
Annual Output Value
Main Markets
Company Certifications

2. Manufacturer Certificates

a) Certification Name  
Range  
Reference  
Validity Period  

3. Manufacturer Capability

a)Trade Capacity  
Nearest Port
Export Percentage
No.of Employees in Trade Department
Language Spoken:
b)Factory Information  
Factory Size:
No. of Production Lines
Contract Manufacturing
Product Price Range

Send your message to us

This is not what you are looking for? Post Buying Request

Similar products

Hot products


Hot Searches

Related keywords