• Carbon Steel Billets High Quality Square Billets for construction System 1
  • Carbon Steel Billets High Quality Square Billets for construction System 2
  • Carbon Steel Billets High Quality Square Billets for construction System 3
Carbon Steel Billets High Quality Square Billets for construction

Carbon Steel Billets High Quality Square Billets for construction

Ref Price:
get latest price
Loading Port:
China main port
Payment Terms:
TT OR LC
Min Order Qty:
50 m.t.
Supply Capability:
100000 m.t./month

Add to My Favorites

Follow us:


OKorder Service Pledge

Quality Product, Order Online Tracking, Timely Delivery

OKorder Financial Service

Credit Rating, Credit Services, Credit Purchasing

Product Description of Carbon Steel Billets High Quality Square Billets for construction

GRADESIZEAPPLICATION

Q195/

215

100mm*100mm*6mREBAR
120mm*120mm*6m
130mm*130mm*6m/12m
150mm*150mm*6m/12m

 

Chemical Compositon of Carbon Steel Billets High Quality Square Billets for construction

Q195/

215

C (%)Si (%)Mn (%)P(%)S(%)
0.06-0.120.15-0.300.35-0.500.045% Max    0.045Max

 

Technology process of Carbon Steel Billets High Quality Square Billets for construction

1.Heat the EVA film

2.Cover the heated EVA film on the mould(can be made from wood or aluminum)

3.Spray a coating in a certain baume degree

4.Put on the empty blask

5.Sand-up the flask and vibrate to compaction

 

Packaging & Delivery of Carbon Steel Billets High Quality Square Billets for construction

Packaging Details:containers

Delivery Detail:Complete one set of equipment needs for three months

The products can be delivered by bulk vessel or by container. As for container, products with the length of 6m will be loaded in 20’ container, with 9m or 12m, in 40’ container.

-The maximum quantity of loading of container is 25 tons.

-The products usually are transported to the nearest port from the production place.

 

Products Show

Prime Quality Q195/215 CNBM Steel Billets with Competitive Price

 

FAQ:

1.Your advantages?

Professional products inquiry, products knowledge train (for agents), smooth goods delivery, excellent    

customer solution proposale

2. Test & Certificate?

SGS test is available, customer inspection before shipping is welcome, third party inspection is no problem

3. Factory or Trading Company?

CNBM is a trading company but we have so many protocol factories and CNBM works as a trading   department

of  these factories. Also CNBM is the holding company of many factories.

4. Payment Terms?

30% TT as deposit and 70% before delivery.

Irrevocable L/C at sight.

5. Trading Terms?

EXW, FOB, CIF, FFR, CNF

6. After-sale Service?

CNBM provides the services and support you need for every step of our cooperation. We're the business

partner you can trust.

For any problem, please kindly contact us at any your convenient time.

We'll reply you in our first priority within 24 hours.

 

Q:What is the role of steel billets in the manufacturing of railway signaling systems?
Steel billets play a crucial role in the manufacturing of railway signaling systems. These billets serve as the primary raw material for the production of various components that are essential for the functioning of these systems. Railway signaling systems are responsible for ensuring the safe and efficient movement of trains on the tracks. They comprise a complex network of electrical and mechanical devices that control the traffic flow, provide information to train operators, and maintain a safe distance between trains. To manufacture these systems, steel billets are utilized in several ways. Firstly, steel billets are used to produce the structural components of railway signaling systems. These components include signal poles, posts, and brackets that support the signaling devices such as lights, signals, and indicators. Steel is chosen for these structural elements due to its high strength, durability, and resistance to environmental factors such as wind, rain, and temperature fluctuations. Secondly, steel billets are employed in the production of various electrical components used in railway signaling systems. These components include wiring conduits, junction boxes, and mounting plates that house and protect the electrical connections and circuitry. Steel's electrical conductivity properties make it an ideal material for these applications. Additionally, steel billets are also utilized in the manufacturing of mechanical components within railway signaling systems. These components include gears, levers, and linkages that facilitate the movement and operation of the signaling devices. Steel's mechanical properties, such as its hardness and ability to withstand high loads, ensure the reliability and longevity of these mechanisms. In summary, steel billets are essential in the manufacturing of railway signaling systems as they provide the necessary raw material for the production of structural, electrical, and mechanical components. Their strength, durability, electrical conductivity, and mechanical properties make them well-suited for the demanding requirements of these systems, ultimately contributing to the safe and efficient operation of railways.
Q:How do steel billet prices fluctuate in the market?
Steel billet prices fluctuate in the market due to various factors such as supply and demand dynamics, global economic conditions, raw material costs, and geopolitical events. Changes in demand from industries like construction, automotive, and manufacturing can drive prices up or down. Additionally, fluctuations in the cost of iron ore, scrap metal, and energy can impact the production cost of steel billets and consequently affect their market prices. Furthermore, trade policies, currency exchange rates, and political stability can also influence the market and lead to price volatility.
Q:What are the different methods of steel billet surface inspection?
In the industry, various methods are commonly employed for inspecting the surface of steel billets. These techniques aim to identify any flaws or imperfections, guaranteeing the use of high-quality steel in the manufacturing process. 1. Visual inspection: Trained inspectors visually examine the billet's surface for visible defects like cracks, dents, scratches, or irregularities. While a straightforward approach, it serves as a crucial initial step in the inspection process. 2. Magnetic particle inspection: This method involves applying a magnetic field to the billet's surface and then introducing iron particles suspended in liquid. If there are any surface defects or cracks, the iron particles adhere to them, creating a visible indication. This technique is especially effective for detecting surface cracks. 3. Eddy current testing: Employing electromagnetic induction, this method detects surface defects. A probe is passed over the billet's surface, and any changes in electrical conductivity caused by cracks or defects generate eddy currents, which can be identified and analyzed. It is commonly used for detecting surface cracks, but it can also measure coating thickness or identify material property variations. 4. Ultrasonic testing: Ultrasonic waves are utilized to inspect the billet's surface for defects. A transducer sends ultrasonic waves into the material, and any changes in the wave pattern caused by surface defects are detected and analyzed. This method is frequently employed for detecting surface cracks, but it also provides insight into the internal structure of the billet. 5. Dye penetrant inspection: This method involves applying colored dye to the billet's surface, which is then removed, leaving the dye trapped within any defects or cracks. A developer is then applied to enhance the visibility of the dye, facilitating the identification and localization of surface defects. It is particularly effective for detecting small surface cracks. 6. Laser scanning: Laser scanning employs a laser beam to scan the billet's surface and generate a three-dimensional representation. This method is valuable for detecting surface irregularities, measuring dimensions, and creating digital models for further analysis. Each of these methods possesses unique advantages and limitations, often employed in combination to ensure a comprehensive inspection of the steel billet's surface. The choice of inspection method depends on factors such as the targeted defects, billet size and shape, and desired level of accuracy.
Q:What are the potential applications of steel billets in the textile aftermarket?
The textile aftermarket offers a multitude of possibilities for the use of steel billets. One area where they can be applied is in the manufacturing of textile machinery and equipment. Steel billets are versatile enough to produce various components such as gears, shafts, and frames, thanks to their exceptional strength and durability. These qualities enable them to withstand the demanding conditions of textile production. Another potential application of steel billets in the textile aftermarket lies in the production of accessories and hardware. Steel billets can be utilized to create a wide array of essential accessories, including buttons, zippers, and buckles. These accessories play a crucial role in the textile industry and require materials that are both robust and resistant to wear and tear. Furthermore, steel billets can be employed in the fabrication of textile molds and tooling. Textile molds are utilized to create intricate patterns and designs on fabrics, while tooling is necessary for cutting, shaping, and finishing textile products. Steel billets provide the necessary strength and stability required for these applications. Additionally, steel billets can be utilized in the construction of textile warehouses and storage facilities. The high load-bearing capacity of steel makes it an excellent choice for constructing durable and secure storage structures. These warehouses can effectively house textile products, raw materials, and machinery, ensuring their safety and longevity. In conclusion, the potential applications of steel billets in the textile aftermarket are extensive. They can be used in machinery and equipment production, accessories and hardware creation, molds and tooling fabrication, as well as warehouse and storage facility construction. With their strength, durability, and reliability, steel billets are an indispensable material in the textile industry.
Q:What is the role of steel billets in the construction industry?
Steel billets play a crucial role in the construction industry as they serve as the primary raw material for the production of various steel products used in construction projects. These billets are semi-finished steel forms that are hot-rolled or forged into different shapes and sizes, such as bars, rods, beams, and wire. The main function of steel billets is to provide the necessary strength, durability, and structural integrity to buildings, bridges, and other infrastructure. They are used in the construction of foundations, columns, beams, and other load-bearing structures, where their high tensile strength and resistance to external forces are essential. Furthermore, steel billets are widely used in reinforcement applications. Reinforcing steel bars, commonly known as rebars, are made from billets and are embedded within concrete structures to enhance their strength and resistance to tension. These rebars are critical in preventing cracks and failures in concrete structures, ensuring their long-term stability and safety. Steel billets also find application in the manufacturing of various construction components, such as pipes, tubes, and wires. These components are used for plumbing, electrical wiring, and other utility installations in buildings and infrastructure projects. In summary, steel billets are a fundamental raw material in the construction industry. Their versatility, strength, and durability make them indispensable for creating sturdy and reliable structures, reinforcing concrete elements, and manufacturing essential construction components.
Q:Charcoal is how to
Now, there is a method of using sawdust and other waste materials to process the charcoal, which is formed by pressing the waste materials into the furnace and heating them indirectly. The raw materials are carbonized into charcoal.The quality of charcoal can only be raised according to different uses.
Q:What are the different surface defects found in stainless steel billets?
Some of the common surface defects found in stainless steel billets include cracks, pits, scratches, scale, and inclusions.
Q:What is a steel billet?
The process of casting molten steel into a rectangular shape produces a semi-finished product known as a steel billet. This billet usually has a square or rectangular cross-section and serves as the initial material for various steel products. The size of a steel billet varies depending on its intended purpose, typically ranging from 100mm to 200mm square in cross-section and several meters in length. Rolling or extrusion techniques are employed to further process these billets, forming bars, rods, wires, or structural steel sections. Steel billets are extensively utilized in the manufacturing industry as a raw material for the production of diverse steel products used across sectors such as construction, automotive, machinery, and more.
Q:What are the different types of steel billet heat treatment processes?
There are several types of steel billet heat treatment processes, including annealing, normalizing, quenching, and tempering. Annealing involves heating the billet to a high temperature and then slowly cooling it to relieve internal stresses and improve its ductility. Normalizing is similar to annealing but involves cooling the billet in still air to achieve a more uniform grain structure. Quenching is a rapid cooling process that involves immersing the billet in a quenching medium, such as water or oil, to achieve high hardness and strength. Tempering follows quenching and involves reheating the billet to a lower temperature to reduce brittleness and enhance toughness.
Q:How are steel billets cut into desired lengths?
Steel billets are typically cut into desired lengths using a process called sawing or shearing. This involves using specialized machinery, such as band saws or circular saws, to cut through the steel billet along the desired length. The saw blades are designed to withstand the hardness of the steel and make precise cuts. This process allows for accurate and efficient production of steel billets in varying lengths as per the requirements of different industries.

1. Manufacturer Overview

Location
Year Established
Annual Output Value
Main Markets
Company Certifications

2. Manufacturer Certificates

a) Certification Name  
Range  
Reference  
Validity Period  

3. Manufacturer Capability

a)Trade Capacity  
Nearest Port
Export Percentage
No.of Employees in Trade Department
Language Spoken:
b)Factory Information  
Factory Size:
No. of Production Lines
Contract Manufacturing
Product Price Range

Send your message to us

This is not what you are looking for? Post Buying Request

Similar products

New products

Hot products


Hot Searches

Related keywords