Hot Rolled Square Steel Billet 3SP Standard 190mm
- Loading Port:
- Shanghai
- Payment Terms:
- TT OR LC
- Min Order Qty:
- 2000 m.t.
- Supply Capability:
- 10000 m.t./month
OKorder Service Pledge
OKorder Financial Service
You Might Also Like
Structure of Hot Rolled Square Steel Billet 3SP Standard 190mm
Description of Hot Rolled Square Steel Billet 3SP Standard 190mm
PPGI is made by cold rolled steel sheet and galvanized steel sheets as baseplate, through the surface pretreatment (degreasing, cleaning, chemical conversion processing), coated by the method of continuous coatings (roller coating method),
and after roasting and cooling. Zinc coating: Z60, Z80, Z100, Z120, Z180, Z275, G30, G60, G90
Alu-zinc coating: AZ60, AZ80, AZ100, AZ120, AZ180, G30, G60, G90
Main Feature of Hot Rolled Square Steel Billet 3SP Standard 190mm
1) Excellent corrosion resistance: The zinc layer provides a good protection of Pre-painted Galvanizeed Steel Sheet.
2) High heat resistance: The reflective surface of the material aids in efficiently reflecting the sunlight away and in turn reducing the amount of heat transmitted. The thermal reflectivity converts into energy savings.
3) Aesthetics: Pre-Painted Galvanized steel sheet is available in plethora of patterns and multiple sizes as per the requirements that given by our customers.
4) Versatility: can be used in the various areas.Standard seaworthy export packing: 3 layers of packing, inside is kraft paper, water plastic film is in the middle and outside GI steel sheet to be covered by steel strips with lock, with inner coil sleeve.
Applications of Hot Rolled Square Steel Billet 3SP Standard 190mm
1) Automotive bodies: filters, fuel tanks, etc.
2) Construction materials: roofings, welding pipes,
3) Electric and electronic appliances: computer cans, etc.
4) Steel cans: containers, etc.
5) Steel furniture: washing machines, refrigerators, microwaves, etc.
6) Drums
7) Office equipment: printer, recorders, etc.
8) Motors and transformers
Specifications of Hot Rolled Square Steel Billet 3SP Standard 190mm
Classified symbol | Yield Point Minimum N/mm2 | Tensile Strength Minimum | Elongation Minimum % | Application | ||||
N/mm2 | Nominal Thickness mm (t) | |||||||
JIS | Yogic | 0.25-0.4 | 0.4-0.6 | 0.6-1.0 | 1.0-1.6 | |||
G3312 | specification | |||||||
CGCC | CGCC | -205 | -270 | -20 | -21 | -24 | -24 | Commercial |
CGCD | CGCD | --- | 270 | --- | 27 | 31 | 32 | Drawing |
--- | CG340 | 245 | 340 | 20 | 20 | 20 | 20 | Structural |
CGC400 | CG400 | 295 | 400 | 16 | 17 | 18 | 18 | Structural |
CGC440 | CG440 | 335 | 440 | 14 | 15 | 16 | 18 | Structural |
CGC490 | CG490 | 365 | 490 | 12 | 13 | 14 | 16 | Structural |
CGC570 | CG570 | 560 | 570 | --- | --- | --- | --- | Structural |
ASTM Designation | Yield Point Minimum | Tensile Strength Minimum | Elongation Minimum % | Application | Q/BQB 445-2004(China standard) | ASM A653/A653M | JISG 3312 | |
ksi(MPa) | ksi(MPa) | TDC51D+Z | (CS TYPE A+Z) | CGCC | ||||
A653(M)-99 CS TYPE A,B,C | --- | --- | --- | Commercial | TDC52D+Z | CGCD | ||
A653(M)-99 FS | --- | --- | --- | Lock Forming | TS250GD+Z | (G250+Z) | - | |
A653(M)-99 DS | --- | --- | --- | Drawing | TS300GS+Z | (G300+Z) | CGC 400 | |
A653(M)-99 SS Grade33(230) | 33(230) | 45(310) | 20 | Structural | TS350GD+Z | (G350+Z) | CGC490 | |
A653(M)-99 SS Grade37(255) | 37(255) | 52(360) | 18 | Structural | TS550GD+Z | (G550+Z) | CGC570 | |
A653(M)-99 SS Grade40(275) | 40(275) | 55(380) | 16 | Structural | ||||
A653(M)-99 SS Grade50(345) | 50(345) | 65(450) | 12 | Structural | ||||
A653(M)-99 SS Grade80(550) | 80(550) | 82(570) | --- | Structural |
FAQ of Hot Rolled Square Steel Billet 3SP Standard 190mm
We have organized several common questions for our clients,may help you sincerely:
1. How Can I Visit There?
Our company is located in Tianjin City, China, near Beijing. You can fly to Tianjin Airport Directly. All our clients, from home or aboard, are warmly welcome to visit us!
2. How Can I Get Some Sample?
We are honored to offer you sample.
3. Why choose CNBM?
1, ISO, BV, CE, SGS approved.
2, Competitive price and quality.
3, Efficient service team online for 24 hours.
4, Smooth production ability(50000tons/month) .
5, quick delivery and standard exporting package.
6, Flexible payment with T/T, L/C, Paypal, Kunlun bank, etc.
- Q: What is the impact of impurities on the quality of steel billets?
- The quality of steel billets is greatly influenced by impurities. Steel billets, which serve as raw materials for various steel products, can be negatively affected by the presence of impurities. To begin with, the mechanical properties of steel billets can be weakened by impurities. For example, sulfur can cause sulfide inclusions, which reduce the strength and toughness of the steel. Similarly, phosphorus can lead to phosphide inclusions that negatively impact the ductility and impact resistance of the billets. These impurities can also promote the formation of cracks and other defects, further compromising the quality of the steel. Additionally, the machinability of steel billets can be adversely affected by impurities. Higher levels of impurities can increase the hardness and decrease the machinability of the steel, making it more challenging to shape into the desired end products. Consequently, this can lead to increased processing time and cost, as well as reduced productivity. Furthermore, the surface finish of steel billets can be impacted by impurities. Oxide inclusions, which are commonly formed due to impurities, can cause surface defects and roughness. This can negatively affect the appearance and aesthetics of the final steel products, making them less desirable in the market. Moreover, impurities can influence the corrosion resistance of steel billets. Some impurities, like chromium and nickel, can improve the corrosion resistance of steel. However, other impurities such as sulfur and phosphorus can promote corrosion, decreasing the lifespan and reliability of the steel products made from these billets. In conclusion, impurities have a significant impact on the quality of steel billets, resulting in weakened mechanical properties, reduced machinability, compromised surface finish, and decreased corrosion resistance. Therefore, it is crucial for steel manufacturers to carefully control and minimize the presence of impurities during the production process to ensure the production of high-quality steel billets.
- Q: What is the typical tensile strength of a steel billet?
- The typical tensile strength of a steel billet can vary depending on the specific grade and composition of the steel. However, in general, steel billets have a tensile strength ranging from 370 to 550 megapascals (MPa). This range is commonly found in low to medium carbon steels used for various applications in industries such as construction, automotive, and manufacturing. It is important to note that higher-grade steels, such as alloy steels, can have significantly higher tensile strengths, exceeding 1000 MPa. Ultimately, the tensile strength of a steel billet is determined by its intended application and the specific requirements of the project.
- Q: What are the causes of internal cracks in continuous casting billet?
- The test according to the process of the sample for cooling, in order to study the effects of the three elements of the internal crack of continuous casting billet hot.
- Q: What are the advantages of using steel billets in the manufacturing process?
- There are several advantages of using steel billets in the manufacturing process. Firstly, steel billets are produced through a controlled casting process, which ensures a high level of quality and consistency in the material. This consistency is crucial in manufacturing applications where precise dimensions and mechanical properties are required. Secondly, steel billets have excellent strength and durability, making them suitable for a wide range of manufacturing applications. Steel is known for its high tensile strength, which allows it to withstand heavy loads and impacts without deformation or failure. This makes steel billets ideal for structural components and machinery parts that need to withstand high stresses. Additionally, steel billets can be easily formed and shaped into various shapes and sizes to meet specific design requirements. They can be hot rolled, cold rolled, or forged to achieve the desired shape, allowing manufacturers to create intricate and complex parts with ease. Moreover, steel billets have excellent heat and corrosion resistance properties. This makes them well-suited for applications that involve high temperatures or exposure to harsh environments, such as automotive components, construction materials, and industrial machinery. Furthermore, steel billets are readily available and cost-effective compared to other materials. Steel is one of the most widely produced and recycled materials globally, ensuring a consistent supply and competitive prices. This accessibility and affordability make steel billets a preferred choice for many manufacturers. Lastly, steel billets are environmentally friendly. Steel is highly recyclable, and the use of recycled steel in the manufacturing process helps reduce energy consumption and greenhouse gas emissions. This makes steel billets a sustainable choice for businesses looking to minimize their environmental impact. In conclusion, the advantages of using steel billets in the manufacturing process include their high quality and consistency, excellent strength and durability, versatility in shaping, heat and corrosion resistance, availability and cost-effectiveness, as well as their environmental sustainability.
- Q: Fish pole carbon cloth tcf. Vcf. Svf. Hcf. On behalf of what?
- Carbon cloth classification, a semicolon after the term, usually called HVF and SVF, where SVF is divided into VCF and so on! The index of carbon fiber is T (ton), common carbon part is 20T-30T commonly. HVF is 30T-40T, SVF is 40T-60T. SVF lighter than HVF, higher strength, better elasticity of the material of products: Di 46T SVF meaning 60T ultra high strength and high modulus carbon fiber cloth, HVF carbon fiber reinforced 30T 40T strength and high modulus. But the domestic ordinary carbon fishing rod material is generally 24T carbon fiber cloth. The higher the T value, the higher the strength and elasticity of the material.
- Q: How are steel billets used in the manufacturing of hydraulic systems?
- The manufacturing of hydraulic systems relies on steel billets, which serve as the raw material for a variety of components. To withstand the high pressures and forces involved, hydraulic systems require sturdy and long-lasting parts. To shape the steel billets into the desired form, they are first heated and then processed through methods like hot rolling or extrusion. These processed steel billets are then further transformed into different hydraulic system components, including cylinders, pistons, valves, and fittings. The utilization of steel billets offers several advantages in the manufacturing of hydraulic systems. Firstly, steel is well-known for its strength and toughness, making it ideal for enduring the extreme pressures and forces experienced in hydraulic systems. Additionally, steel boasts excellent resistance to corrosion, which is essential given the exposure to fluids and harsh environments in hydraulic systems. Moreover, steel billets can be easily machined and welded, enabling the creation of intricate and customized hydraulic components. The versatility of steel billets allows for the production of various shapes and sizes required for different applications within hydraulic systems. Overall, steel billets play a crucial role in the manufacturing of hydraulic systems by providing a resilient, durable, and adaptable material for the production of essential components. Their use guarantees the dependability and efficiency of hydraulic systems, enabling them to perform their intended functions across numerous industries such as construction, manufacturing, and transportation.
- Q: What are the quality standards for steel billets?
- The quality standards for steel billets typically include criteria such as chemical composition, dimensional accuracy, surface finish, mechanical properties, and internal soundness. These standards ensure that the steel billets meet the required specifications for various applications and guarantee their strength, durability, and suitability for further processing.
- Q: What are the different methods used for heating steel billets?
- Heating steel billets can be achieved through various methods, each tailored to meet specific application requirements and constraints. Some commonly employed techniques include: 1. Induction Heating: By passing an alternating current through a coil, electromagnetic induction generates a magnetic field that induces electrical currents in the billet, subsequently producing heat. This method provides precise and controllable heating, ensuring uniformity throughout the billet. 2. Gas Furnaces: Utilizing burners, gas furnaces generate heat that is then transferred to the steel billets via convection. Commonly fueled by natural gas or propane, these furnaces offer flexibility in terms of temperature control, heating rate, and energy efficiency. 3. Electric Resistance Heating: This method involves passing electric current through resistive elements, such as heating elements or heating pads, in direct contact with the steel billets. The resistance to the electric current generates heat, which is then transferred to the billets. Electric resistance heating is typically used for smaller-scale operations or applications with specific heating requirements. 4. Flame Heating: Flame heating employs an open flame, usually produced by a gas burner, to heat the steel billets. The billets absorb the radiant heat emitted by the flame, resulting in heating. Flame heating is commonly utilized for larger billets or applications that necessitate rapid heating. 5. High-Frequency Heating: Through the use of electromagnetic fields, high-frequency heating achieves billet heating. The billets are positioned within a coil, and a high-frequency alternating current is passed through the coil, generating electrical currents in the billets. Heat is produced as a result of the resistance to these electrical currents, ensuring rapid and uniform heating. 6. Laser Heating: High-powered lasers are employed in laser heating to heat the steel billets. The laser beam is focused on the billet's surface, allowing for intense heat generation through the absorption of laser energy. Laser heating provides precise and localized heating, making it suitable for specific applications or for heat treating small areas of the billets. These aforementioned methods represent only a fraction of the techniques commonly employed for heating steel billets. The choice of method depends on various factors, including the required heating rate, temperature control, energy efficiency, and the specific characteristics of the billets.
- Q: What is billet?
- At present, the casting process has been basically eliminated.Mainly from the shape of two:Slab: the ratio of section width and height is larger, which is mainly used for rolling plate.Billet: cross section width, height equal, or difference is not big, mainly used for rolling steel, wire.
- Q: What are the weight ranges of steel billets?
- The weight of steel billets can vary based on the industry's specific requirements and standards. Generally, steel billets can weigh anywhere from a few kilograms to several metric tons. The weight of a steel billet is determined by factors like its dimensions, intended application, and production process. Smaller steel billets, used in construction or manufacturing, typically weigh between 1 to 10 kilograms. Conversely, larger steel billets, commonly utilized in heavy machinery or infrastructure projects, can weigh anywhere from 10 to 100 metric tons or potentially more. It is important to note that these weight ranges are approximate estimates and may differ depending on the particular industry requirements and production capabilities.
Send your message to us
Hot Rolled Square Steel Billet 3SP Standard 190mm
- Loading Port:
- Shanghai
- Payment Terms:
- TT OR LC
- Min Order Qty:
- 2000 m.t.
- Supply Capability:
- 10000 m.t./month
OKorder Service Pledge
OKorder Financial Service
Similar products
Hot products
Hot Searches
Related keywords