• Steel Billet  Hot Rolled Q275 in Amazing Good Price System 1
  • Steel Billet  Hot Rolled Q275 in Amazing Good Price System 2
  • Steel Billet  Hot Rolled Q275 in Amazing Good Price System 3
Steel Billet  Hot Rolled Q275 in Amazing Good Price

Steel Billet Hot Rolled Q275 in Amazing Good Price

Ref Price:
get latest price
Loading Port:
Tianjin
Payment Terms:
TT OR LC
Min Order Qty:
1000 m.t.
Supply Capability:
50000 m.t./month

Add to My Favorites

Follow us:


OKorder Service Pledge

Quality Product, Order Online Tracking, Timely Delivery

OKorder Financial Service

Credit Rating, Credit Services, Credit Purchasing

1.Structure of Steel Billet

Steel billet(ingot) by cogging or breakdown of semi-finished products, is the raw material of all kinds of steel mill. Billet section of square, round, flat, rectangular and abnormity of several kinds of, mainly related to the shape of rolled products. 

2.Main Features of Steel Billet

Rectangular billet continuous casting billet and mainly general carbon steel, low carbon low silicon cold-rolled material, high quality carbon structural steel, high strength low alloy steel, special steel, etc. 

The billet is mainly divided into two kinds from the shape: 

Slab: cross section width and height of the ratio of the larger, mainly used for rolling plate. 

Billet: equal cross section width and height, or a huge difference, mainly used for rolling steel, wire rod. , 

Steel billets have distinct characteristics as compared with already furnished steel bars and products. Billets have a specific grain structure, which enables the metal to be processed more intricately. Steel billets are also known for their malleability and ductility, especially when exposed to varying temperatures during shaping and molding.

3.Steel Billet Images 

 

Steel Billet  Hot Rolled Q275 in Amazing Good Price

Steel Billet  Hot Rolled Q275 in Amazing Good Price


4. Steel Billet Specification

Hot rolled billet steel 

Size: 50x50mm-180x180mm

Steel Grade: 3SP, 5SP,Q195,Q235,Q255,Q275 Length:3m-12m

MOQ: 1000MT/size

Payment term: TT or LC

Packing: in bulk , bundle

Shipment: by container , bulk vessel

Packaging Details: bundles with steel strips or as customers's requirements

Delivery time: 15-30 days after the deposit

Loading port:Tianjin, or other port China 

Origin :China 

Inspection:Third party inspection before loading.

5.FAQ

We have organized several common questions for our clientsmay help you sincerely: 

1) How about your company

 A world class manufacturer & supplier of castings forging in carbon steel and alloy steelis one of the large-scale professional investment casting production bases in China,consisting of both casting foundry forging and machining factory. Annually more than 8000 tons Precision casting and forging parts are exported to markets in Europe,America and Japan. OEM casting and forging service available according to customer’s requirements.

2)If there’s something wrong with the quality of the products, how do we return the goods?

A: We promise you the quality will be the same as the samples you confirmed. If there’s something wrong with the quality of the products, please send back sample from the shipment goods to us and let us know the quantity, then we will investigate in our work shop. If it is our problem, we will offer you discount or replacements for free.



Q:How does the composition of steel affect the properties of steel billets?
The properties of steel billets are determined by the composition of steel, which is a critical factor. Steel is primarily composed of iron and carbon, with small amounts of other elements like manganese, silicon, and sulfur. The physical and mechanical properties of steel billets are greatly influenced by the percentage of carbon and the presence of other alloying elements. Strength is one of the key properties affected by the composition of steel. By increasing the carbon content, the strength of steel is enhanced, making it suitable for applications that require high tensile strength, such as construction beams and automotive parts. The presence of alloying elements like manganese and silicon can also improve the strength and hardness of steel. Ductility and toughness are also affected by the composition of steel. Ductility refers to the ability of steel to deform under tensile stress without fracturing, while toughness is its ability to withstand impact and resist fracture. Higher carbon content tends to reduce ductility and toughness, making the steel more brittle. Therefore, for applications that require good ductility and toughness, it is preferred to have lower carbon content and the addition of alloying elements like nickel, chromium, and molybdenum. The composition of steel also influences its corrosion resistance. The addition of elements like chromium and nickel can significantly enhance the steel's resistance to corrosion, making it suitable for applications in harsh environments or exposed to corrosive substances like seawater. Stainless steel, for example, contains a high percentage of chromium, which forms a protective oxide layer on the surface, preventing corrosion. Machinability and weldability are other properties affected by the composition of steel. Higher carbon content may reduce machinability due to increased hardness, while alloying elements like sulfur and phosphorus can improve machinability. Similarly, certain elements can affect the weldability of steel, as they may cause cracking or other defects during welding. In conclusion, the composition of steel billets has a significant impact on their properties. The percentage of carbon and the presence of other alloying elements influence the strength, ductility, toughness, corrosion resistance, machinability, and weldability of steel. Therefore, it is crucial to carefully consider the desired properties and select the appropriate steel composition for various industrial applications.
Q:How are steel billets used in the production of railway components?
Steel billets are an integral part of the production process for railway components. These billets, which are essentially semi-finished steel products, are used as the raw material for manufacturing various railway components such as rails, wheels, axles, and other structural parts. To produce railway components, the steel billets are first heated to a specific temperature to make them more malleable. This heating process is crucial as it allows the steel to be easily shaped and formed into the desired component. Once the billets have reached the required temperature, they are then transferred to the next stage of the production process. Here, they are subjected to various processes such as rolling, forging, and machining to transform them into the final shape and size required for the specific railway component. For instance, in the production of railway rails, the heated steel billets are passed through a series of rolling mills where they are gradually shaped and elongated into the desired rail profile. Similarly, for the production of wheels and axles, the billets are forged and machined to achieve the required dimensions and surface finish. The use of steel billets in the production of railway components ensures that the final products are strong, durable, and capable of withstanding the heavy loads and stresses associated with railway operations. The quality and characteristics of the steel billets play a vital role in determining the performance and longevity of the railway components. Overall, steel billets are crucial in the production of railway components as they provide the raw material that is shaped, formed, and processed to create the final products that are essential for the safe and efficient functioning of the railway system.
Q:Can steel billets be used in the aerospace industry?
Yes, steel billets can be used in the aerospace industry. Steel billets are a semi-finished product that can be further processed into various components and structures required for aerospace applications. Steel is known for its high strength, durability, and heat resistance, which are crucial properties for aerospace materials. Steel billets can be used to manufacture various aerospace components such as engine parts, landing gear, structural frames, and fasteners. Additionally, steel's availability and cost-effectiveness make it an attractive choice for certain aerospace applications. However, it is important to note that the specific requirements and standards of the aerospace industry must be met when using steel billets to ensure the highest level of safety and reliability.
Q:How do steel billets contribute to the manufacturing of packaging materials?
Packaging materials manufacturing heavily relies on steel billets, especially those that necessitate strength and endurance. These semi-finished steel products are typically acquired through continuous casting or hot rolling. Steel billets significantly contribute to the production of steel drums, a pivotal aspect of packaging material manufacturing. Steel drums find extensive use in industries like chemicals, petroleum, and food processing for storing and transporting diverse substances. The robustness and rigidity of steel billets make them an ideal choice for manufacturing these drums, guaranteeing the integrity of the packaging remains uncompromised even under the weight and pressure of their contents. Apart from steel drums, steel billets are also indispensable in the creation of metal cans. Metal cans enjoy broad application in packaging food, beverages, and other consumer goods. They create an excellent barrier against moisture, light, and oxygen, thereby preserving and safeguarding the packaged items. Steel billets are employed in fabricating the can bodies, lids, and bottoms, imparting requisite strength and stability to withstand the pressure during canning and transportation. Furthermore, steel billets play a vital role in manufacturing steel straps and bands for securing and bundling packages. These straps effectively secure heavy and bulky items, preventing shifting or damage during transit. The high tensile strength of steel billets ensures the straps can adequately hold packages together, providing stability and protection. Moreover, steel billets are occasionally utilized in producing corrugated steel sheets. These sheets are commonly employed in manufacturing heavy-duty packaging materials like crates and pallets. Corrugated steel sheets possess excellent strength and rigidity, making them suitable for transporting heavy items over long distances. Steel billets undergo a series of processes, such as rolling, cutting, and shaping, to transform into these sheets, ensuring the final product meets the necessary specifications. In conclusion, steel billets play a pivotal role in packaging material manufacturing. Their strength, durability, and versatility make them ideal for producing steel drums, metal cans, straps, and corrugated steel sheets. By utilizing steel billets, manufacturers can create packaging materials capable of meeting the demands of diverse industries, ensuring the safe and secure transportation of goods.
Q:What are the main factors affecting the fatigue strength of stainless steel billets?
There are several main factors that can affect the fatigue strength of stainless steel billets. Firstly, the composition of the stainless steel plays a significant role in determining its fatigue strength. Stainless steel alloys with higher amounts of elements such as chromium, molybdenum, and nickel tend to have improved fatigue strength. These alloying elements enhance the material's resistance to corrosion and increase its ability to withstand cyclic loading, resulting in better fatigue performance. Secondly, the microstructure of the stainless steel billet is another important factor. The presence of defects or impurities within the microstructure can act as stress concentration points, making the material more prone to fatigue failure. Therefore, a well-controlled and homogenous microstructure is essential for achieving higher fatigue strength. Thirdly, the surface condition of the stainless steel billet can significantly impact its fatigue strength. Surface irregularities, such as scratches, nicks, or pitting, act as stress raisers and can initiate cracks under cyclic loading. Proper surface treatment, such as grinding, polishing, or passivation, can help to minimize these surface defects and improve the fatigue resistance of the material. Additionally, the manufacturing process and heat treatment of stainless steel billets can influence their fatigue strength. Processes such as forging, rolling, or extrusion can introduce residual stresses into the material, which may decrease its fatigue strength. Therefore, careful control of the manufacturing process and appropriate heat treatment techniques, such as annealing or quenching, are crucial to optimize the fatigue performance of stainless steel billets. Lastly, operating conditions, including the applied stress levels, temperature, and environmental factors, can also affect the fatigue strength of stainless steel billets. Higher stress levels or elevated temperatures can accelerate fatigue crack initiation and propagation, leading to reduced fatigue life. Similarly, exposure to corrosive environments can promote localized corrosion fatigue, causing premature failure. Therefore, understanding the intended operating conditions and selecting the appropriate stainless steel grade and surface protection can help to maximize the fatigue strength and prolong the service life of stainless steel billets.
Q:How do steel billets contribute to the automotive industry?
Steel billets play a crucial role in the automotive industry by serving as the primary raw material for the production of various automotive components. These components include engine parts, transmission systems, chassis, suspension systems, and other critical components that ensure the safety, performance, and durability of vehicles. One of the key contributions of steel billets to the automotive industry is their exceptional strength and durability. Steel is renowned for its high tensile strength, which allows it to withstand extreme forces and provide structural integrity to automotive components. This strength is particularly important in areas such as the frame, where it ensures the safety of passengers in the event of a collision. Additionally, steel billets offer excellent formability and versatility, allowing manufacturers to create intricate and complex automotive parts with precision. This enables the production of components that meet the specific design requirements of different vehicle models, ensuring optimal performance and functionality. Steel billets also contribute to the automotive industry by providing cost-effectiveness. Steel is a relatively affordable material compared to alternatives such as aluminum or carbon fiber. Its widespread availability and production efficiency make it a cost-effective choice for mass production, helping to keep vehicle prices reasonable for consumers. Moreover, steel billets possess excellent heat resistance and thermal conductivity properties. This makes them ideal for use in engine components, such as pistons and cylinder heads, where they can withstand high temperatures and efficiently transfer heat. Furthermore, steel billets contribute to the sustainability of the automotive industry. Steel is a highly recyclable material, with a recycling rate of around 90%. This allows for the eco-friendly disposal and reuse of steel components, reducing the environmental impact of the automotive manufacturing process. In summary, steel billets play a vital role in the automotive industry by providing the strength, durability, formability, and cost-effectiveness necessary for the production of various automotive components. Their versatility and recyclability further contribute to the sustainability of the industry. Without steel billets, the automotive industry would struggle to produce safe, reliable, and affordable vehicles.
Q:What are the different types of steel billet forging machines?
There are several different types of steel billet forging machines available in the market today. These machines are designed to efficiently shape and form steel billets into desired shapes and sizes. Here are some of the common types of steel billet forging machines: 1. Hydraulic Forging Press: This type of machine uses hydraulic power to exert force on the steel billet, allowing it to be forged into the desired shape. Hydraulic forging presses are known for their high force capabilities and versatility in handling different sizes of billets. 2. Mechanical Forging Press: Mechanical forging presses use mechanical power, such as flywheels or eccentric mechanisms, to exert force on the billet. These machines are known for their reliability and precision, making them suitable for high-volume production. 3. Screw Press: Screw presses utilize a rotating screw mechanism to apply force on the steel billet. They are characterized by their high-speed operation and efficient energy usage. Screw presses are commonly used for forging small to medium-sized billets. 4. Hammer Forging Machine: Hammer forging machines use a hammering action to shape the steel billet. There are various types of hammer forging machines, including steam hammers, air hammers, and hydraulic hammers. These machines are known for their high impact force, making them suitable for heavy-duty forging. 5. Upsetter: Upsetters, also known as upsetting machines, are specifically designed for forging the ends of steel billets. They use a vertical or horizontal ram to apply pressure on the billet, causing it to increase in diameter and length. Upsetters are commonly used for producing forged components with thickened ends. 6. Radial Forging Machine: Radial forging machines employ a rotating roller to apply radial force on the steel billet. This force causes the billet to increase in diameter while maintaining its original length. Radial forging machines are often used for producing seamless rings and other cylindrical components. It's important to note that the choice of the most suitable steel billet forging machine depends on factors such as the size and shape of the billet, desired production volume, and specific requirements of the final product. Each type of machine has its own advantages and limitations, so it is crucial to consider these factors when selecting the appropriate forging machine for a given application.
Q:What are the main safety precautions in handling steel billets?
When handling steel billets, there are several important safety precautions that should be followed to minimize the risk of accidents and injuries. 1. Personal Protective Equipment (PPE): It is vital to wear appropriate PPE, such as steel-toed boots, protective gloves, safety glasses, and a hard hat. This gear provides essential protection against potential hazards such as falling objects, sharp edges, and splashes. 2. Lifting and Handling Techniques: Proper lifting techniques should be used to avoid strains and injuries. It is essential to bend the knees and lift with the legs, keeping the back straight. Using mechanical aids like cranes or forklifts can also help reduce the physical strain of lifting heavy steel billets. 3. Secure Storage and Stacking: Steel billets should be stored securely to prevent them from falling or rolling over. They should be stacked in a stable manner, ensuring that the bottom layer is strong enough to support the weight. Using racks, pallets, or other appropriate storage systems can help maintain stability. 4. Proper Machinery Operation: If machinery or equipment is used to transport or manipulate steel billets, it is crucial to follow the manufacturer's instructions and operate the machinery safely. This includes regular maintenance checks, ensuring that safety guards are in place, and using equipment within its specified capacity. 5. Hazard Communication: Clear signage and labels should be used to indicate the presence of steel billets or any potential hazards associated with their handling. Workers should be trained to recognize and understand these signs and be aware of the risks involved. 6. Fire Prevention: Steel billets can pose a fire hazard if they come into contact with flammable materials or are exposed to high temperatures. Therefore, it is important to keep the work area clean and free from combustible substances. Additionally, fire extinguishers should be readily available, and workers should be trained in their proper usage. 7. Training and Education: Proper training and education programs should be implemented to ensure that all workers are familiar with the potential hazards of handling steel billets and know how to mitigate them. This training should cover safety procedures, emergency response protocols, and the correct use of personal protective equipment. By following these safety precautions, the risk of accidents and injuries when handling steel billets can be significantly reduced, creating a safer working environment for all personnel involved.
Q:What is the maximum length of a steel billet?
The length of a steel billet can differ based on multiple factors like the manufacturing process, equipment capabilities, and specific industry demands. Typically, steel billets can vary in length from a few inches to several meters. Nevertheless, it is crucial to acknowledge that longer billets pose more difficulties in their production and handling due to their heavier weight and potential for distortion. Hence, determining the maximum length of a steel billet is usually based on practical considerations and operational constraints within the steel industry.
Q:What is the average lead time for ordering steel billets?
The lead time for ordering steel billets can vary depending on several factors, including the supplier, quantity needed, production capacity, and current market conditions. Typically, the lead time can range from a few weeks to a couple of months. If the supplier has readily available stock or a short production cycle, the lead time may be shorter, usually around two to four weeks. However, if the supplier needs to produce the steel billets specifically for the order, it may take longer. In such cases, the lead time can extend to six to eight weeks or even longer, particularly if there are any production process delays. Considering the quantity required is also crucial. Smaller orders may have shorter lead times compared to larger quantities, as they can be accommodated within the supplier's existing production schedule or available stock. Furthermore, market conditions play a significant role. When there is high demand or disruptions in the supply chain, lead times may increase due to heightened competition for resources and longer production cycles. To obtain an accurate estimate of the average lead time for ordering steel billets, it is advisable to contact multiple suppliers and discuss your specific requirements with them. They can provide more precise information based on their production capabilities and the current market conditions.

1. Manufacturer Overview

Location
Year Established
Annual Output Value
Main Markets
Company Certifications

2. Manufacturer Certificates

a) Certification Name  
Range  
Reference  
Validity Period  

3. Manufacturer Capability

a)Trade Capacity  
Nearest Port
Export Percentage
No.of Employees in Trade Department
Language Spoken:
b)Factory Information  
Factory Size:
No. of Production Lines
Contract Manufacturing
Product Price Range

Send your message to us

This is not what you are looking for? Post Buying Request

Similar products

Hot products


Hot Searches

Related keywords