Hot Rolled Square Steel Billet 3SP Standard 110mm
- Loading Port:
- Shanghai
- Payment Terms:
- TT OR LC
- Min Order Qty:
- 2000 m.t.
- Supply Capability:
- 10000 m.t./month
OKorder Service Pledge
OKorder Financial Service
You Might Also Like
Structure of Hot Rolled Square Steel Billet 3SP Standard 110mm
Description of Hot Rolled Square Steel Billet 3SP Standard 110mm
PPGI is made by cold rolled steel sheet and galvanized steel sheets as baseplate, through the surface pretreatment (degreasing, cleaning, chemical conversion processing), coated by the method of continuous coatings (roller coating method),
and after roasting and cooling. Zinc coating: Z60, Z80, Z100, Z120, Z180, Z275, G30, G60, G90
Alu-zinc coating: AZ60, AZ80, AZ100, AZ120, AZ180, G30, G60, G90
Main Feature of Hot Rolled Square Steel Billet 3SP Standard 110mm
1) Excellent corrosion resistance: The zinc layer provides a good protection of Pre-painted Galvanizeed Steel Sheet.
2) High heat resistance: The reflective surface of the material aids in efficiently reflecting the sunlight away and in turn reducing the amount of heat transmitted. The thermal reflectivity converts into energy savings.
3) Aesthetics: Pre-Painted Galvanized steel sheet is available in plethora of patterns and multiple sizes as per the requirements that given by our customers.
4) Versatility: can be used in the various areas.Standard seaworthy export packing: 3 layers of packing, inside is kraft paper, water plastic film is in the middle and outside GI steel sheet to be covered by steel strips with lock, with inner coil sleeve.
Applications of Hot Rolled Square Steel Billet 3SP Standard 110mm
1) Automotive bodies: filters, fuel tanks, etc.
2) Construction materials: roofings, welding pipes,
3) Electric and electronic appliances: computer cans, etc.
4) Steel cans: containers, etc.
5) Steel furniture: washing machines, refrigerators, microwaves, etc.
6) Drums
7) Office equipment: printer, recorders, etc.
8) Motors and transformers
Specifications of Hot Rolled Square Steel Billet 3SP Standard 110mm
Classified symbol | Yield Point Minimum N/mm2 | Tensile Strength Minimum | Elongation Minimum % | Application | ||||
N/mm2 | Nominal Thickness mm (t) | |||||||
JIS | Yogic | 0.25-0.4 | 0.4-0.6 | 0.6-1.0 | 1.0-1.6 | |||
G3312 | specification | |||||||
CGCC | CGCC | -205 | -270 | -20 | -21 | -24 | -24 | Commercial |
CGCD | CGCD | --- | 270 | --- | 27 | 31 | 32 | Drawing |
--- | CG340 | 245 | 340 | 20 | 20 | 20 | 20 | Structural |
CGC400 | CG400 | 295 | 400 | 16 | 17 | 18 | 18 | Structural |
CGC440 | CG440 | 335 | 440 | 14 | 15 | 16 | 18 | Structural |
CGC490 | CG490 | 365 | 490 | 12 | 13 | 14 | 16 | Structural |
CGC570 | CG570 | 560 | 570 | --- | --- | --- | --- | Structural |
ASTM Designation | Yield Point Minimum | Tensile Strength Minimum | Elongation Minimum % | Application | Q/BQB 445-2004(China standard) | ASM A653/A653M | JISG 3312 | |
ksi(MPa) | ksi(MPa) | TDC51D+Z | (CS TYPE A+Z) | CGCC | ||||
A653(M)-99 CS TYPE A,B,C | --- | --- | --- | Commercial | TDC52D+Z | CGCD | ||
A653(M)-99 FS | --- | --- | --- | Lock Forming | TS250GD+Z | (G250+Z) | - | |
A653(M)-99 DS | --- | --- | --- | Drawing | TS300GS+Z | (G300+Z) | CGC 400 | |
A653(M)-99 SS Grade33(230) | 33(230) | 45(310) | 20 | Structural | TS350GD+Z | (G350+Z) | CGC490 | |
A653(M)-99 SS Grade37(255) | 37(255) | 52(360) | 18 | Structural | TS550GD+Z | (G550+Z) | CGC570 | |
A653(M)-99 SS Grade40(275) | 40(275) | 55(380) | 16 | Structural | ||||
A653(M)-99 SS Grade50(345) | 50(345) | 65(450) | 12 | Structural | ||||
A653(M)-99 SS Grade80(550) | 80(550) | 82(570) | --- | Structural |
FAQ of Hot Rolled Square Steel Billet 3SP Standard 110mm
We have organized several common questions for our clients,may help you sincerely:
1. How Can I Visit There?
Our company is located in Tianjin City, China, near Beijing. You can fly to Tianjin Airport Directly. All our clients, from home or aboard, are warmly welcome to visit us!
2. How Can I Get Some Sample?
We are honored to offer you sample.
3. Why choose CNBM?
1, ISO, BV, CE, SGS approved.
2, Competitive price and quality.
3, Efficient service team online for 24 hours.
4, Smooth production ability(50000tons/month) .
5, quick delivery and standard exporting package.
6, Flexible payment with T/T, L/C, Paypal, Kunlun bank, etc .
- Q: What are the main factors affecting the tensile strength of steel billets?
- The main factors affecting the tensile strength of steel billets include the chemical composition of the steel, the heat treatment process, the presence of impurities or defects in the material, the grain size and orientation, and the processing conditions used during manufacturing.
- Q: What are the different types of defects that can occur during casting of steel billets?
- During the casting of steel billets, several types of defects can occur, affecting the quality and integrity of the final product. Some common defects include: 1. Shrinkage: Shrinkage defects occur when the metal cools and solidifies unevenly, causing voids or shrinkage cavities in the billet. This can weaken the structure and reduce its overall strength. 2. Porosity: Porosity refers to the presence of trapped gas or air bubbles in the billet. It can occur due to improper gating or venting, inadequate control of the pouring temperature, or the presence of impurities in the molten metal. Porosity can reduce the billet's mechanical properties and make it more susceptible to failure. 3. Inclusions: Inclusions are non-metallic materials, such as oxides, sulfides, or refractory particles, that get trapped in the billet during casting. These inclusions can weaken the metal, leading to reduced ductility, increased brittleness, and decreased resistance to fatigue or corrosion. 4. Cold shuts: Cold shuts happen when two streams of molten metal fail to fuse properly during casting, resulting in a visible line or seam in the billet. Cold shuts can weaken the billet and cause it to fail under stress. 5. Hot tearing: Hot tearing occurs when the solidifying metal is restrained from contracting, leading to localized cracking or tearing. It usually happens due to high thermal stresses or inadequate feeding of the metal during solidification. Hot tearing can significantly affect the billet's structural integrity. 6. Misruns: Misruns are defects that occur when the molten metal fails to fill the entire mold cavity completely. This can happen due to inadequate pouring temperature, improper gating or venting, or insufficient fluidity of the metal. Misruns can result in incomplete, undersized, or malformed billets with reduced mechanical properties. 7. Surface defects: Surface defects include surface cracks, scabs, or surface roughness that can occur during the solidification or cooling process. These defects can lead to increased rejection rates, reduced machinability, and compromised surface finish of the billet. It is crucial to identify and minimize these defects during the casting process to ensure the production of high-quality steel billets with the desired mechanical properties and dimensional accuracy.
- Q: What are the main factors affecting the corrosion resistance of stainless steel billets?
- The main factors affecting the corrosion resistance of stainless steel billets are the composition of the alloy, the presence of impurities, the manufacturing process, and the environment in which the billets are exposed. The composition of the stainless steel alloy plays a crucial role in determining its corrosion resistance. The addition of elements such as chromium, nickel, and molybdenum enhances the resistance to corrosion. These alloying elements form a protective oxide layer on the surface of the stainless steel, which acts as a barrier against corrosive agents. Impurities present in the stainless steel billets can also affect their corrosion resistance. For example, the presence of sulfur can lead to the formation of sulfide inclusions, which can decrease the overall corrosion resistance of the material. Therefore, the control of impurities during the manufacturing process is essential to ensure optimal corrosion resistance. The manufacturing process used to produce stainless steel billets can also impact their corrosion resistance. Factors such as temperature, cooling rate, and the presence of contaminants during the production process can affect the microstructure of the material, which in turn influences its corrosion resistance. Lastly, the environment in which the stainless steel billets are exposed plays a significant role in their corrosion resistance. Factors such as temperature, humidity, pH level, and the presence of corrosive agents such as acids or chlorides can accelerate the corrosion process. Therefore, it is essential to consider the specific environmental conditions when selecting stainless steel billets for a particular application. In conclusion, the corrosion resistance of stainless steel billets is influenced by the alloy composition, the presence of impurities, the manufacturing process, and the environment in which they are exposed. By carefully considering these factors, it is possible to select stainless steel billets with optimal corrosion resistance for a wide range of applications.
- Q: How do steel billets contribute to the manufacturing of water and wastewater treatment equipment?
- Steel billets are used in the manufacturing of water and wastewater treatment equipment as they serve as the raw material for various components such as pipes, tanks, and structural supports. These billets are melted and shaped into the required forms, ensuring the durability and strength of the equipment. Additionally, steel billets can be further processed to create corrosion-resistant coatings, ensuring the longevity and reliability of the equipment in harsh water and wastewater environments.
- Q: What are the main challenges in the recycling of steel billets?
- Several challenges arise when it comes to recycling steel billets, which are semi-finished steel products. The recycling process of steel billets includes several main challenges: 1. Contamination: Throughout their usage, steel billets can become contaminated with various materials such as oil, grease, paint, or other metals. Removing these contaminants and ensuring the purity of the recycled steel can be a complex and costly process. 2. Sorting and segregation: Steel billets come in different grades and sizes, requiring them to be sorted and segregated accordingly for effective recycling. This necessitates advanced sorting technologies and manual labor to ensure that the correct billets are recycled in the appropriate manner. 3. Energy consumption: The recycling of steel billets involves melting and reprocessing the steel, which demands a significant amount of energy. This energy consumption presents a challenge as it contributes to greenhouse gas emissions and increases the overall environmental impact of the recycling process. 4. Infrastructure and logistics: The collection, transportation, and processing of steel billets necessitate a well-established infrastructure and logistics network. Insufficient facilities or transportation can impede the efficient recycling of steel billets. 5. Economic viability: The economic viability of recycling steel billets can be challenging, especially when the cost of recycling exceeds the value of the recycled material. This can discourage recycling efforts and lead to a greater reliance on primary steel production. 6. Consumer awareness and participation: It is crucial to educate consumers about the importance of recycling steel billets and encourage their participation in recycling programs. Lack of awareness and indifference towards recycling can hinder the collection of steel billets for recycling purposes. 7. International trade barriers: In certain cases, trade barriers and import/export restrictions can affect the recycling of steel billets. These barriers can limit the flow of recycled steel billets across different countries, impacting the overall recycling capacity and market dynamics. To address these challenges, a collaborative effort between industries, governments, and consumers is necessary. Investments in research and development, technological advancements, and policy support can help overcome these challenges and promote the sustainable recycling of steel billets.
- Q: How are steel billets used in the manufacturing of pipes and tubes?
- Steel billets are used in the manufacturing of pipes and tubes as they serve as the starting material for the production process. These billets are heated and then passed through a series of rolling mills to shape them into cylindrical forms. The rolling process helps to reduce the thickness and diameter of the billets, ultimately transforming them into seamless or welded pipes and tubes. Additionally, steel billets may also undergo further treatments such as heat treatment or surface finishing to enhance their strength, durability, and overall quality before being used in various industries.
- Q: What are the potential applications of steel billets in the food and beverage aftermarket?
- Steel billets offer a wide array of possibilities in the food and beverage aftermarket. One possibility is their use in fabricating food processing equipment. Machinery and tools like conveyor belts, food mixers, and cutting implements can all be produced with steel billets. The strength and durability of steel make it an ideal material for these applications, as it can withstand heavy use and maintain its integrity even in harsh conditions. Another application for steel billets in the food and beverage aftermarket is the construction of storage tanks and containers. Steel's corrosion resistance makes it perfect for storing a variety of food and beverage products. Tanks and containers manufactured with steel billets can securely hold liquids such as water, juices, and alcoholic beverages. These tanks can also be insulated to ensure proper temperature control, which is crucial for preserving the quality of perishable items. In addition, steel billets can be used to produce kitchen equipment and utensils. Steel is a hygienic material that is easy to clean and maintain, making it well-suited for use in commercial kitchens and food preparation areas. Knives, pans, and cooking pots are just a few examples of kitchen utensils that can be shaped from steel billets. These utensils are known for their durability and ability to conduct heat evenly, resulting in efficient food preparation and cooking. Overall, the potential applications of steel billets in the food and beverage aftermarket are extensive. Whether it's food processing equipment, storage tanks, or kitchen utensils, steel billets provide a dependable and versatile material for various industries within the food and beverage sector. Its strength, durability, and hygienic properties make it a valuable resource for ensuring the safe and efficient production, storage, and preparation of food and beverages.
- Q: Can steel billets be used for making jewelry?
- Yes, steel billets can be used for making jewelry, especially for creating unique and bold designs that incorporate an industrial or contemporary aesthetic. However, steel is not as commonly used for jewelry making compared to other materials like gold, silver, or platinum.
- Q: What are the potential risks associated with steel billet production?
- Steel billet production carries various potential risks. To begin with, the production process involves working with high temperatures and molten metal, which can lead to burns and fire hazards. Operators and workers must exercise caution when handling the equipment and ensure they follow proper safety protocols to prevent accidents. Moreover, the raw materials used in steel billet production, such as iron ore and coal, may contain impurities that can release harmful gases and particulate matter during production. If not controlled and mitigated effectively, these emissions can pose health risks to workers and nearby communities. In addition, the machinery and equipment utilized in steel billet production, including furnaces and rolling mills, can pose mechanical hazards if not adequately maintained or operated. Accidents resulting from equipment malfunctions or material failures can cause injuries to workers and damage to the production facility. Furthermore, the steel industry heavily relies on non-renewable energy sources, such as electricity and fossil fuels, which contribute to greenhouse gas emissions and climate change. It is essential to minimize the environmental impact by implementing energy-efficient practices and adopting cleaner technologies. Lastly, transporting steel billets from the production facility to the next stage in the supply chain presents risks. Proper lifting and securing techniques are necessary to prevent accidents and injuries during loading, unloading, and transportation of the heavy steel billets. To address these risks, steel billet producers must prioritize safety measures. This includes conducting regular equipment inspections, providing proper training for workers, implementing environmental controls, adhering to safety regulations, and continuously improving operational practices.
- Q: Can steel billets be used in the production of sculptures and artwork?
- Sculptures and artwork can indeed utilize steel billets. Steel, being a versatile and malleable material, empowers artists to fashion one-of-a-kind and intricate designs. The inclusion of steel billets in sculptures and artwork guarantees sturdiness, resilience, and the potential for expansive installations. Artists can skillfully mold, fuse, and manipulate steel billets to generate an extensive array of sculptures, ranging from abstract shapes to figurative representations. The utilization of steel also contributes a contemporary and audacious touch to the artwork, thanks to its industrial aesthetic. Moreover, artists can opt to employ diverse techniques such as painting, patina, or polishing to further enrich their creative vision. In summary, steel billets present an exhilarating prospect for artists to delve into and stretch the boundaries of their artistic expression.
Send your message to us
Hot Rolled Square Steel Billet 3SP Standard 110mm
- Loading Port:
- Shanghai
- Payment Terms:
- TT OR LC
- Min Order Qty:
- 2000 m.t.
- Supply Capability:
- 10000 m.t./month
OKorder Service Pledge
OKorder Financial Service
Similar products
Hot products
Hot Searches
Related keywords