• Monolithic Refractories High Performance Ladle Sliding Gate for Iron and Steel Industry 2024 System 1
  • Monolithic Refractories High Performance Ladle Sliding Gate for Iron and Steel Industry 2024 System 2
  • Monolithic Refractories High Performance Ladle Sliding Gate for Iron and Steel Industry 2024 System 3
  • Monolithic Refractories High Performance Ladle Sliding Gate for Iron and Steel Industry 2024 System 4
  • Monolithic Refractories High Performance Ladle Sliding Gate for Iron and Steel Industry 2024 System 5
  • Monolithic Refractories High Performance Ladle Sliding Gate for Iron and Steel Industry 2024 System 6
Monolithic Refractories High Performance Ladle Sliding Gate for Iron and Steel Industry 2024

Monolithic Refractories High Performance Ladle Sliding Gate for Iron and Steel Industry 2024

Ref Price:
get latest price
Loading Port:
Shanghai
Payment Terms:
TT OR LC
Min Order Qty:
100 pc
Supply Capability:
1000 pc/month

Add to My Favorites

Follow us:


OKorder Service Pledge

Quality Product, Order Online Tracking, Timely Delivery

OKorder Financial Service

Credit Rating, Credit Services, Credit Purchasing

Quick Details for High Performance Refractory Ladle Slide Gate

Place of Origin:

 China (Mainland)

Shape:

Plate

Material:

Alumina Block

SiO2 Content (%):

N/A

Al2O3 Content (%):

80-90%

MgO Content (%):

N/A

CaO Content (%):

N/A

Refractoriness (Degree):

1770°< Refractoriness< 2000°

CrO Content (%):

N/A

SiC Content (%):

N/A

Model Number:

CS80

Brand Name:


Product name:

High performance refractory ladle slide gate

Model No.:

cs80

Brand name:

CMAX

Quality:

Al-C or Al-Zr-C

Service life:

4-6 heats

Apparent porosity:

7% Max

Bulk density::

3.1 MIN

C.C.S:

120MPA

MOQ:

100 pcs for trial

Delivery time:

60 working days upon receipt of deposit






Packaging & Delivery

Packaging Details:Inner carton packing, outer wooden case suitable for long term sea shipping
Delivery Detail:three months working days upon receipt of deposit

High Performance Ladle  Sliding Gate for Steel Industry 2015

Specifications

Surface flatness less than 0.05mm 
High mechanical strength 
Erosion resistance 
Oxidation resistance 
Thermal shock stability

General Chemical Analysis for  refractory ladle slide gate :


slide gate plate widely including Alumina carbon and Alumina Zirconia Carbon slide gate plate, MgO and MgO-spinel slide gate plate,nonoxides bonding slide gate plateand unburned slide gate plate.


Alumina -Zirconia-Carbon material

Al-Zr-C Material
Al2O3CZrO2Apparent porosityBulk densityC.C.S
(% minm)(% minm)(% minm)(% max)(gm./cc minm)(MPa minm)
853573.1120
853473.1120

Composite type: Al-Zr-C for working line, outer Al-C material

High Performance Ladle  Sliding Gate for Steel Industry 2015


High Performance Ladle  Sliding Gate for Steel Industry 2015



Al-Zr-C & Al-C Material

Al2O3CZrO2Apparent porosityBulk densityC.C.S

(% minm)(% minm)(% minm)(% max)(gm./cc minm)(MPa minm)
Inner side (Working face)853473.1120
     Outside903093


Using the raw materials of tabular alumina, zirconia-corundum, carbon and other high-grade additives, after sintering to obtain characteristics of oxidation resistance, scour strength, erosion resistance, thermal shock resistance, shape stable and long service life, made our products the preferred materials for the large and medium-sized steel ladle, refining ladle, series of alloy steel ladle, and tundish. Our high performance sintering sliding gates include alumina carbon , Al2O3-ZrO2-C, etc, can meet the needs of different steel grade.


Other Products


High Performance Ladle  Sliding Gate for Steel Industry 2015


About us

High Performance Ladle  Sliding Gate for Steel Industry 2015

High Performance Ladle  Sliding Gate for Steel Industry 2015



 

Sample is on your request.


Welcome to visit our factory~

Q:How do monolithic refractories contribute to the overall efficiency of ladle transfer processes?
Monolithic refractories contribute to the overall efficiency of ladle transfer processes by providing excellent thermal insulation and resistance to high temperatures, which helps in maintaining the heat of the molten metal during transfer. They also have high mechanical strength and erosion resistance, ensuring longer service life and reduced downtime for repairs. Additionally, monolithic refractories offer easy installation and can be shaped to fit the ladle's specific geometry, minimizing heat loss and ensuring a more efficient transfer process.
Q:What are the main challenges in designing the lining system with monolithic refractories?
One of the main challenges in designing the lining system with monolithic refractories is achieving proper installation. Monolithic refractories are typically installed by casting, gunning, or shotcreting, which requires skilled labor and precise application techniques. Any errors or inconsistencies during installation can compromise the performance and longevity of the lining system. Another challenge is ensuring adequate bonding between the monolithic refractories and the existing structure. Proper adhesion is crucial to prevent refractory material from delaminating or separating from the underlying surface. Factors such as surface preparation, temperature differentials, and mechanical stress can affect the bond strength, requiring careful consideration during the design phase. The compatibility of monolithic refractories with various operating conditions is another challenge. Refractory materials are exposed to extreme temperatures, chemical reactions, and thermal cycling, which can lead to degradation and failure. Designing a lining system that can withstand these conditions requires a thorough understanding of the refractory properties and the specific requirements of the application. Furthermore, selecting the right monolithic refractory material for a given lining system is a significant challenge. There are various types of monolithic refractories available, each with its own strengths and weaknesses. Factors such as temperature range, chemical composition, thermal conductivity, abrasion resistance, and thermal shock resistance need to be considered when choosing the most suitable material for the application. Lastly, maintaining the integrity of the monolithic refractory lining system over its lifetime is a challenge. Regular inspections, repairs, and maintenance are necessary to address any issues such as cracks, erosion, or spalling. Developing a comprehensive maintenance plan and ensuring access to skilled personnel for repairs are essential aspects of designing a successful lining system with monolithic refractories.
Q:What are the cost implications of using monolithic refractories in the iron and steel industry?
The cost implications of using monolithic refractories in the iron and steel industry can be both positive and negative. On the positive side, monolithic refractories are often more cost-effective in terms of installation and maintenance compared to traditional brick refractories. They can be easily applied and repaired, reducing downtime and labor costs. Additionally, monolithic refractories have better thermal efficiency, leading to energy savings and lower operating costs. However, there are also potential drawbacks to consider. Monolithic refractories may have a higher initial material cost compared to bricks. They can be more susceptible to chemical attacks and erosion, requiring more frequent replacements. The selection and installation of monolithic refractories also require specialized expertise, which can increase costs if not managed properly. Overall, the cost implications of using monolithic refractories in the iron and steel industry depend on various factors such as the specific application, maintenance practices, and expertise available. Proper evaluation and decision-making are crucial to ensure the best balance between initial investment and long-term cost savings.
Q:What are the considerations for repairing and relining monolithic refractories?
When repairing and relining monolithic refractories, there are several key considerations that need to be taken into account. First and foremost, it is crucial to assess the extent of the damage or deterioration in order to determine the appropriate repair method. Factors such as the type of refractory material, the operating conditions, and the expected service life must be considered. Additionally, it is essential to select the right refractory material for the repair or relining process. This involves evaluating the temperature range, chemical resistance, thermal conductivity, and mechanical properties of the refractory material to ensure it is compatible with the specific application. Another important consideration is the proper preparation of the surface before applying the repair material. This may involve removing any loose or damaged refractory, cleaning the surface thoroughly, and creating a suitable bonding surface to ensure optimal adhesion. Furthermore, the application technique and curing process of the repair material should be carefully followed to achieve the desired performance and durability. This may involve proper mixing, application thickness, drying time, and temperature control. Lastly, it is crucial to conduct regular inspections and maintenance to identify any signs of deterioration or damage early on. This proactive approach will help prevent major repairs or relining in the future and prolong the overall lifespan of the monolithic refractories.
Q:How do monolithic refractories withstand the chemical attacks in aluminum furnace applications?
Due to its unique composition and properties, monolithic refractories can resist chemical attacks in aluminum furnace applications. These materials are designed to have high resistance to the corrosive effects of molten aluminum and other chemicals found in the furnace environment. To begin with, monolithic refractories are created by combining different minerals like alumina, silicon carbide, and zirconia. These minerals have high melting points and excellent chemical stability. Acting as a barrier between corrosive substances and the underlying structure, they prevent penetration or damage to the refractory lining. Moreover, monolithic refractories typically contain high levels of alumina, which provides exceptional resistance to chemical attacks. Alumina has a strong affinity for oxygen, resulting in the formation of a stable oxide layer on the refractory material's surface. This layer acts as a protective barrier against corrosive elements and reduces the rate of penetration. In addition, monolithic refractories are often designed with a dense microstructure and low porosity. This ensures fewer pathways for corrosive substances to attack the refractory material. The denser the material, the less susceptible it is to chemical attacks. Furthermore, the resistance of monolithic refractories can be further improved by incorporating additives or binders. These additives may consist of organic or inorganic materials that enhance protection against corrosive substances. Overall, monolithic refractories are engineered specifically to withstand the harsh conditions of aluminum furnace applications. Their unique composition, high alumina content, dense microstructure, and resistance-enhancing additives all contribute to their ability to withstand chemical attacks and prolong the lifespan of refractory linings in aluminum furnaces.
Q:What are the recommended drying procedures for monolithic refractories?
The recommended drying procedures for monolithic refractories typically involve a gradual and controlled process to ensure the refractory material is properly cured and hardened. This typically includes a pre-drying phase where the refractory is heated slowly to remove any residual moisture. After pre-drying, a gradual increase in temperature is applied to further remove moisture and allow for proper chemical reactions to occur within the refractory. It is important to closely follow manufacturer guidelines and consider factors such as refractory thickness, ambient humidity, and available drying equipment to determine the specific drying procedures for each application.
Q:How do monolithic refractories contribute to reducing emissions in iron and steel processes?
Monolithic refractories play a crucial role in reducing emissions in iron and steel processes by providing a more efficient and sustainable lining solution compared to traditional brick refractories. Firstly, monolithic refractories are characterized by their homogeneous structure, which allows for easier installation and repair. This feature reduces the downtime required for maintenance, resulting in increased productivity and ultimately lower emissions. In contrast, brick refractories require more extensive labor and time-consuming procedures for installation and repair, leading to longer shutdown periods and increased emissions. Moreover, monolithic refractories exhibit superior thermal insulation properties. By minimizing heat loss from the furnace or kiln, they enable higher energy efficiency and reduce the fuel consumption required for achieving the desired temperature. This reduction in fuel usage directly translates to lower emissions of greenhouse gases, such as carbon dioxide, contributing to the overall environmental sustainability of iron and steel processes. Additionally, monolithic refractories offer excellent resistance to thermal and chemical wear, enhancing the durability and lifespan of the lining. This durability reduces the frequency of refractory replacement, resulting in reduced waste generation and resource consumption. By extending the service life of the lining, monolithic refractories contribute to reducing the environmental impact associated with the production and disposal of refractory materials. Furthermore, monolithic refractories can be formulated with specialized compositions and additives to enhance their resistance to corrosion and erosion, common challenges in iron and steel processes. By minimizing the wear and tear on the refractory lining, they help maintain the integrity of the furnace or kiln, preventing the leakage of harmful gases and pollutants that would otherwise contribute to emissions. In summary, monolithic refractories contribute to reducing emissions in iron and steel processes through their ease of installation and repair, superior thermal insulation properties, increased durability, and resistance to corrosion and erosion. By optimizing energy efficiency, minimizing downtime, and reducing waste generation, monolithic refractories offer a sustainable solution for the industry, aligning with the global efforts to combat climate change and promote environmental stewardship.
Q:How are monolithic refractories installed in iron and steel production processes?
Monolithic refractories are installed in iron and steel production processes using various methods depending on the specific application and requirements. The installation process typically involves the following steps: 1. Surface Preparation: Before installing monolithic refractories, the surface where they will be applied must be properly prepared. This involves cleaning and removing any loose materials, dust, or contaminants from the substrate. 2. Mixing: Monolithic refractories consist of different materials such as aggregates, binders, and additives. These components are mixed in specific proportions to achieve the desired properties and consistency. The mixing process can be done manually or using mechanical mixers. 3. Application: There are different techniques for applying monolithic refractories, including gunning, casting, ramming, and troweling. The chosen method depends on factors such as the shape of the structure, accessibility, and required thickness. - Gunning: This method involves using a gunning machine to spray the refractory material onto the surface. It is commonly used to repair or patch existing linings or for rapid installation in areas that are difficult to access. - Casting: In casting, the refractory material is poured into molds or forms and left to set and harden. This method is suitable for creating complex shapes and large-sized components. - Ramming: Ramming involves manually or mechanically compacting the refractory material into a mold or form using a ramming tool. This technique is commonly used for lining induction furnaces, ladles, and other equipment. - Troweling: Troweling is a manual method where the refractory material is applied and smoothed using a trowel. It is often used for smaller repairs or touch-ups. 4. Curing: After the refractory material is applied, it needs to be cured to achieve its optimum strength and performance. Curing involves allowing the material to dry and harden at a controlled temperature and humidity for a specified period. This step is crucial to ensure the long-term durability and resistance of the monolithic refractory lining. Overall, the installation of monolithic refractories in iron and steel production processes requires careful preparation, proper mixing, and the appropriate application technique. It is essential to follow manufacturer guidelines and industry best practices to ensure a successful installation that meets the specific needs of the production process.
Q:Can monolithic refractories be used for the lining of blast furnace runners and troughs?
Yes, blast furnace runners and troughs can have their lining done with monolithic refractories. Monolithic refractories, unlike traditional refractory bricks that are made by assembling individual units, are composed of a single, homogeneous structure. There are several advantages to using monolithic refractories for lining blast furnace runners and troughs. Firstly, they exhibit excellent thermal shock resistance, which is vital in this application given the extreme temperature fluctuations the lining is exposed to. Additionally, monolithic refractories have a good resistance to chemical attack from the molten metal and slag, which helps prolong the lining's lifespan in the harsh working environment of blast furnaces. Moreover, monolithic refractories can be easily installed in intricate shapes and structures, allowing for greater flexibility in designing the lining of blast furnace runners and troughs. This ease of installation also results in reduced downtime during maintenance and repair, as monolithic refractories can be applied quickly and efficiently. To summarize, monolithic refractories are a suitable option for lining blast furnace runners and troughs due to their thermal shock resistance, chemical resistance, and easy installation. Their use can contribute to improving the longevity and performance of these critical components in blast furnace operations.
Q:How do monolithic refractories improve the performance of ladles and tundishes?
Monolithic refractories improve the performance of ladles and tundishes by providing superior thermal insulation, high mechanical strength, and resistance to chemical attacks and thermal shocks. These qualities enhance the overall durability and longevity of the ladles and tundishes, reducing the need for frequent repairs or replacements. Additionally, monolithic refractories offer better flow properties, facilitating smooth and efficient pouring of molten metal, while minimizing the risk of slag or metal infiltration. Overall, the use of monolithic refractories improves the efficiency, productivity, and cost-effectiveness of ladles and tundishes in various industrial applications.

1. Manufacturer Overview

Location
Year Established
Annual Output Value
Main Markets
Company Certifications

2. Manufacturer Certificates

a) Certification Name  
Range  
Reference  
Validity Period  

3. Manufacturer Capability

a)Trade Capacity  
Nearest Port
Export Percentage
No.of Employees in Trade Department
Language Spoken:
b)Factory Information  
Factory Size:
No. of Production Lines
Contract Manufacturing
Product Price Range

Send your message to us

This is not what you are looking for? Post Buying Request

Similar products

Hot products


Hot Searches

Related keywords