• Monolithic Refractories High Temperature Ladle Sliding Gate for Iron and Steel Industry 2024 System 1
  • Monolithic Refractories High Temperature Ladle Sliding Gate for Iron and Steel Industry 2024 System 2
  • Monolithic Refractories High Temperature Ladle Sliding Gate for Iron and Steel Industry 2024 System 3
  • Monolithic Refractories High Temperature Ladle Sliding Gate for Iron and Steel Industry 2024 System 4
  • Monolithic Refractories High Temperature Ladle Sliding Gate for Iron and Steel Industry 2024 System 5
  • Monolithic Refractories High Temperature Ladle Sliding Gate for Iron and Steel Industry 2024 System 6
Monolithic Refractories High Temperature Ladle Sliding Gate for Iron and Steel Industry 2024

Monolithic Refractories High Temperature Ladle Sliding Gate for Iron and Steel Industry 2024

Ref Price:
get latest price
Loading Port:
Shanghai
Payment Terms:
TT OR LC
Min Order Qty:
100 pc
Supply Capability:
1000 pc/month

Add to My Favorites

Follow us:


OKorder Service Pledge

Quality Product, Order Online Tracking, Timely Delivery

OKorder Financial Service

Credit Rating, Credit Services, Credit Purchasing

Quick Details for High Performance Refractory Ladle Slide Gate

Place of Origin:

 China (Mainland)

Shape:

Plate

Material:

Alumina Block

SiO2 Content (%):

N/A

Al2O3 Content (%):

80-90%

MgO Content (%):

N/A

CaO Content (%):

N/A

Refractoriness (Degree):

1770°< Refractoriness< 2000°

CrO Content (%):

N/A

SiC Content (%):

N/A

Model Number:

CS80

Brand Name:


Product name:

High performance refractory ladle slide gate

Model No.:

cs80

Brand name:

CMAX

Quality:

Al-C or Al-Zr-C

Service life:

4-6 heats

Apparent porosity:

7% Max

Bulk density::

3.1 MIN

C.C.S:

120MPA

MOQ:

100 pcs for trial

Delivery time:

60 working days upon receipt of deposit






Packaging & Delivery

Packaging Details:Inner carton packing, outer wooden case suitable for long term sea shipping
Delivery Detail:three months working days upon receipt of deposit

High Temperature Ladle  Sliding Gate for Steel Industry 2015

Specifications

Surface flatness less than 0.05mm 
High mechanical strength 
Erosion resistance 
Oxidation resistance 
Thermal shock stability

General Chemical Analysis for  refractory ladle slide gate :


slide gate plate widely including Alumina carbon and Alumina Zirconia Carbon slide gate plate, MgO and MgO-spinel slide gate plate,nonoxides bonding slide gate plateand unburned slide gate plate.


Alumina -Zirconia-Carbon material

Al-Zr-C Material
Al2O3CZrO2Apparent porosityBulk densityC.C.S
(% minm)(% minm)(% minm)(% max)(gm./cc minm)(MPa minm)
853573.1120
853473.1120

Composite type: Al-Zr-C for working line, outer Al-C material

High Temperature Ladle  Sliding Gate for Steel Industry 2015

High Temperature Ladle  Sliding Gate for Steel Industry 2015

High Temperature Ladle  Sliding Gate for Steel Industry 2015

High Temperature Ladle  Sliding Gate for Steel Industry 2015


Al-Zr-C & Al-C Material

Al2O3CZrO2Apparent porosityBulk densityC.C.S

(% minm)(% minm)(% minm)(% max)(gm./cc minm)(MPa minm)
Inner side (Working face)853473.1120
     Outside903093


Using the raw materials of tabular alumina, zirconia-corundum, carbon and other high-grade additives, after sintering to obtain characteristics of oxidation resistance, scour strength, erosion resistance, thermal shock resistance, shape stable and long service life, made our products the preferred materials for the large and medium-sized steel ladle, refining ladle, series of alloy steel ladle, and tundish. Our high performance sintering sliding gates include alumina carbon , Al2O3-ZrO2-C, etc, can meet the needs of different steel grade.


Other Products


High Temperature Ladle  Sliding Gate for Steel Industry 2015


About us

High Temperature Ladle  Sliding Gate for Steel Industry 2015

High Temperature Ladle  Sliding Gate for Steel Industry 2015



 

Sample is on your request.


Welcome to visit our factory~

Q:How do monolithic refractories resist corrosion and erosion in the iron and steel industry?
To combat corrosion and erosion in the iron and steel industry, monolithic refractories are designed with a combination of composition and application techniques. Firstly, the composition includes high-quality raw materials like alumina, magnesia, and silica, which possess exceptional resistance to corrosion and erosion. For example, alumina can withstand high temperatures and chemical attacks, making it an ideal choice for protecting against the corrosive nature of the industry. Additionally, the application techniques used in installing monolithic refractories are crucial for their resistance. These techniques, such as gunning, ramming, or casting, ensure a tight and seamless bond between the refractory and the steel structure, reducing the chances of corrosion and erosion. Furthermore, monolithic refractories can be tailored to meet the specific needs of different parts of the iron and steel industry. For areas exposed to molten metal, refractories with high thermal conductivity and resistance to chemical attack are utilized. This customization enhances the refractory's effectiveness in resisting corrosion and erosion. Moreover, monolithic refractories often incorporate additives or binders to further enhance their resistance. These additives provide extra protection against chemical attacks from molten metal or corrosive gases, making the refractory even more durable in harsh conditions. In summary, monolithic refractories effectively resist corrosion and erosion in the iron and steel industry due to their composition, application techniques, customization, and the inclusion of additives. By combining these factors, these refractories ensure the longevity and efficiency of steel structures in the challenging environments of the industry.
Q:Can monolithic refractories be used for the lining of blast furnace runners and troughs?
Yes, monolithic refractories can be used for the lining of blast furnace runners and troughs. Monolithic refractories are a type of refractory material that is composed of a single, homogeneous structure, as opposed to traditional refractory bricks that are made by assembling individual units. Monolithic refractories offer several advantages for lining blast furnace runners and troughs. Firstly, they have excellent thermal shock resistance, which is crucial in this application as the lining is subjected to extreme temperature fluctuations. Monolithic refractories also have good resistance to chemical attack from the molten metal and slag, which helps to prolong the lining's lifespan in the harsh working environment of blast furnaces. Furthermore, monolithic refractories can be easily installed in complex shapes and structures, allowing for greater flexibility in designing the lining of blast furnace runners and troughs. This ease of installation also leads to reduced downtime during maintenance and repair, as monolithic refractories can be quickly and efficiently applied. In summary, monolithic refractories are a suitable choice for lining blast furnace runners and troughs due to their thermal shock resistance, chemical resistance, and ease of installation. Their use can help to improve the longevity and performance of these critical components in blast furnace operations.
Q:How do monolithic refractories respond to changes in thermal conditions?
Monolithic refractories have the ability to withstand and adapt to changes in thermal conditions. They have a high thermal shock resistance, meaning they can handle rapid changes in temperature without cracking or breaking. Additionally, they exhibit good thermal conductivity, allowing them to efficiently conduct and distribute heat. Overall, monolithic refractories demonstrate a stable and reliable response to changes in thermal conditions.
Q:What are the factors influencing the choice of monolithic refractories for different furnace types?
There are several factors that influence the choice of monolithic refractories for different furnace types. Firstly, the operating temperature of the furnace is a crucial factor as different monolithic refractories have different temperature resistance levels. Secondly, the type of material being processed in the furnace is important as certain materials may require specific refractories to withstand their corrosive or abrasive nature. Thirdly, the furnace design and its heating method also play a role in determining the suitable refractory material. Additionally, the thermal conductivity, thermal shock resistance, and mechanical strength of the refractory are considered to ensure optimal performance and durability. Finally, cost, availability, and installation requirements are factors that can influence the choice of monolithic refractories for different furnace types.
Q:How do monolithic refractories provide thermal insulation in the iron and steel industry?
The iron and steel industry heavily relies on monolithic refractories for thermal insulation. These refractories are extensively used to line furnaces and other high-temperature equipment involved in the production processes. Monolithic refractories excel in thermal insulation due to their ability to withstand extreme temperatures without degradation or melting. They are specifically designed to resist high heat, enabling their usage in environments with temperatures reaching several thousand degrees Celsius. By enduring such extreme conditions, these refractories effectively prevent heat transfer to the surrounding structure, thereby ensuring insulation. Another key aspect of monolithic refractories' thermal insulation is their low thermal conductivity. These materials possess a low thermal conductivity, rendering them inefficient in conducting heat. Instead, they trap heat within their structure and minimize its transfer to the surrounding equipment or environment. This characteristic is instrumental in maintaining optimal temperatures inside furnaces and other high-temperature equipment, enabling efficient and controlled metal production. Moreover, monolithic refractories can be applied as a thick lining layer, further establishing an additional barrier between the high-temperature environment and the surrounding equipment. The thickness of the refractory lining acts as a buffer, reducing heat transfer and mitigating the impact of high temperatures on the structural integrity of the equipment. In addition to providing thermal insulation, monolithic refractories also exhibit exceptional resistance to chemical attack and mechanical wear, which are common challenges in the iron and steel industry. This resistance ensures the longevity of the refractory lining, guaranteeing consistent and reliable insulation over time. In summary, monolithic refractories contribute to thermal insulation in the iron and steel industry through their high-temperature resistance, low thermal conductivity, thick lining layer, and resistance to chemical attack and mechanical wear. These properties effectively maintain the desired temperature inside equipment and safeguard the surrounding structure from the intense heat generated during metal production processes.
Q:How are monolithic refractories different from traditional refractory bricks?
Monolithic refractories are different from traditional refractory bricks because they are not pre-fabricated into brick shapes. Instead, they are supplied as a ready-mix or ready-to-use material that can be directly applied on-site. This eliminates the need for complex brick-laying processes and allows for a more flexible and efficient installation. Monolithic refractories also have superior thermal shock resistance and can withstand higher temperatures, making them ideal for demanding industrial applications.
Q:How are monolithic refractories repaired or replaced in iron and steel facilities?
Monolithic refractories in iron and steel facilities are repaired or replaced through a process known as hot repair or hot gunning. This involves using specialized equipment to heat the damaged refractory material and remove it. The area is then prepared for new refractory installation, which is done by either shotcreting or gunning the new material onto the surface. This method allows for quick repairs and replacements, minimizing downtime and ensuring the efficiency and safety of the facility.
Q:How do monolithic refractories enhance the performance of ladle and tundish preheating systems?
Monolithic refractories enhance the performance of ladle and tundish preheating systems by providing excellent thermal insulation, high mechanical strength, and resistance to corrosion and erosion. This allows for efficient heat retention and distribution, ensuring uniform and consistent preheating of ladles and tundishes. Additionally, monolithic refractories minimize heat losses, reduce energy consumption, and increase the lifespan of the preheating systems, contributing to improved overall performance.
Q:How do monolithic refractories resist chemical attack from molten metals and slags?
A combination of factors enables monolithic refractories to withstand chemical attack from molten metals and slags. Firstly, these refractories are composed of high-quality materials with excellent chemical resistance properties, such as alumina, magnesia, or silica. These materials possess a stable chemical structure that can endure the corrosive nature of molten metals and slags. Secondly, additives or binders are often incorporated into monolithic refractories to enhance their resistance to chemical attack. By improving the refractory's capability to form a protective layer on its surface, these additives act as a barrier between the refractory material and the corrosive molten metal or slag. Furthermore, monolithic refractories are designed with a dense microstructure that restricts the infiltration of molten metals and slags. This dense structure minimizes the pathways through which corrosive agents can reach the refractory material, effectively reducing the risk of chemical attack. In addition, proper joint design and anchoring systems can be employed during the installation of monolithic refractories to prevent the infiltration of corrosive substances. This ensures that the refractory lining remains intact and capable of effectively resisting chemical attack. In summary, the combination of high-quality materials, additives, dense microstructure, and proper installation techniques contribute to the ability of monolithic refractories to resist chemical attack from molten metals and slags. This, in turn, extends their lifespan and maintains the integrity of the refractory lining in high-temperature applications.
Q:How do monolithic refractories improve the efficiency of reheating furnaces in steel plants?
The efficiency of reheating furnaces in steel plants is greatly improved by the use of monolithic refractories. Specifically designed to withstand high temperatures and harsh conditions, these refractories are an ideal choice for steel plants. One important way in which monolithic refractories enhance furnace efficiency is by decreasing heat loss. With their excellent insulation properties, these refractories minimize the transfer of heat from the furnace to its surroundings. As a result, less energy is wasted and the furnace can maintain its desired temperature more effectively. Furthermore, monolithic refractories contribute to a more uniform and controlled distribution of heat within the furnace. They can be easily shaped and installed to create a seamless lining, ensuring that heat is evenly spread throughout the furnace chamber. This even distribution of heat eliminates any hotspots or cold spots, resulting in a more efficient heating process. Another crucial role of monolithic refractories is reducing downtime and maintenance requirements. Unlike traditional brick linings, which are prone to cracking and erosion, monolithic refractories offer superior resistance to wear and tear. This increased durability reduces the need for frequent repairs and replacements, allowing for uninterrupted furnace operation and increased overall efficiency. Moreover, monolithic refractories help improve energy efficiency by decreasing fuel consumption. The superior insulation properties of these refractories help retain heat within the furnace, reducing the amount of energy needed to maintain the desired temperature. This leads to significant energy savings for steel plants, as less fuel is required to achieve the same heating results. In conclusion, the efficiency of reheating furnaces in steel plants is significantly enhanced by the use of monolithic refractories. These refractories reduce heat loss, ensure uniform heat distribution, minimize downtime and maintenance, and decrease fuel consumption. By incorporating these refractories into their furnace linings, steel plants can increase productivity, reduce energy costs, and improve overall operational efficiency.

1. Manufacturer Overview

Location
Year Established
Annual Output Value
Main Markets
Company Certifications

2. Manufacturer Certificates

a) Certification Name  
Range  
Reference  
Validity Period  

3. Manufacturer Capability

a)Trade Capacity  
Nearest Port
Export Percentage
No.of Employees in Trade Department
Language Spoken:
b)Factory Information  
Factory Size:
No. of Production Lines
Contract Manufacturing
Product Price Range

Send your message to us

This is not what you are looking for? Post Buying Request

Similar products

Hot products


Hot Searches

Related keywords