• G3312 Grade PPGI Steel Sheets for Roofing System 1
  • G3312 Grade PPGI Steel Sheets for Roofing System 2
  • G3312 Grade PPGI Steel Sheets for Roofing System 3
  • G3312 Grade PPGI Steel Sheets for Roofing System 4
  • G3312 Grade PPGI Steel Sheets for Roofing System 5
  • G3312 Grade PPGI Steel Sheets for Roofing System 6
G3312 Grade PPGI Steel Sheets for Roofing

G3312 Grade PPGI Steel Sheets for Roofing

Ref Price:
$300.00 - 500.00 / m.t. get latest price
Loading Port:
Tianjin
Payment Terms:
TT or LC
Min Order Qty:
25 m.t.
Supply Capability:
5000 m.t./month

Add to My Favorites

Follow us:


OKorder Service Pledge

Quality Product, Order Online Tracking, Timely Delivery

OKorder Financial Service

Credit Rating, Credit Services, Credit Purchasing

Specification

Type:
Alloy Steel
Shape:
Steel Coil
Standard:
AISI,JIS,GB,BS,DIN,API,EN,ASTM
Thickness:
0.2 - 2.0MM
Technique:
Hot Rolled,Cold Rolled,Cold Drawn
Shape:
Round
Surface Treatment:
Galvanized,Coated,Color Coated,PVDF Coated
Steel Grade:
Q195,Q215,Q235,Q215B,Q235B
Certification:
ISO,SGS,BV,IBR,RoHS,CE,API,BSI,UL
Width:
600 - 1250MM
Net Weight:
2MT
Length:
12m

G3312 Grade PPGI Steel Sheets for Roofing


Description of G3312 Grade PPGI Steel Sheets for Roofing

Product

PPGI/PPGL

Capacity

5,000 tons/month

Base material

Hot dipped galvanized steel

Thickness

0.2-2.0mm

Width

600-1250mm(according to your need)

Coil Weight

3-6tons

Quality

SGCC, DX51D

Color

RAL No. or customers samples’ color

Zinc-coating

30g/m2-180g/m2

Coil ID

508mm/610mm

Technique

Cold rolled—hot dipped galvanized—color coated

Painting

Top painting:15~25μm

Back painting: 6~10μm

Tolerance

Thickness: +/-0.02mm

Width:+/-2mm

Shipment time

within 15-45 workdays

Payment

 T/T, L/C at sight 

Packing

Standard export packing

The special order can be negotiated.


Application of G3312 Grade PPGI Steel Sheets for Roofing

APPLICATION OF OUR PREPAINTED STEEL

Construction

Outside

Workshop,agricultural   warehouse,residential precast unit

corrugated roof,roller   shutter door,rainwater drainage pipe,retailer booth

Inside

Door,doorcase,light   steel roof stucture,folding screen,elevator,stairway,ven gutter,Construction Wall

Electrical applicance 

Refrigerator,washer,switch   cabnet,instrument cabinet,air conditioning,micro-wave owen,bread maker

Fuiniture

Central   heating slice,lampshade,chifforobe,desk,bed,locker,bookself

Carrying trade

Exterior   decoration of auto and train,clapboard,container,isolation lairage,isolation   board

Qthers 

Writing   panel,garbagecan,billboard,timekeeper,typewriter,instrument panel,weight   sensor,photographic equipment


Products Show of G3312 Grade PPGI Steel Sheets for Roofing

G3312 Grade PPGI Steel Sheets for Roofing

Product Advantages

1.With nearly 20 years   experience in prepainted steel, accommodate   different marketdemands.

2.'Quality first, service first' is our business   aim; 'The good faith get respect,cast quality market' is our Business philosophy . 

3.Having two series producttion line,with the abbual production capacity of 240000 tons.

4.Exceed International ISO9001:2008&ISO14001:2004 quality and environmental standards 

5.Meet with ROHS standard


Company Information

CNBM International Corporation is the most important trading platform of CNBM group.

Whith its advantages, CNBM International are mainly concentrate on Cement, Glass, Iron and Steel, Ceramics industries and devotes herself for supplying high qulity series of refractories as well as technical consultancies and logistics solutions.

Astm 615 Bs4449 B500B Deformed Steel RebarsAstm 615 Bs4449 B500B Deformed Steel Rebars 


F A Q

1, Your advantages?

     professional products inquiry, products knowledge train (for agents), smooth goods delivery, excellent customer solution proposale

2, Test & Certificate?

      SGS test is available, customer inspection before shipping is welcome, third party inspection is no problem

3,  Factory or Trading Company?

      CNBM is a trading company but we have so many protocol factories and CNBM works as a trading department of these factories. Also CNBM is the holding company of many factories.

4, Payment Terms?

    30% TT as deposit and 70% before delivery.

    Irrevocable L/C at sight.

5, Trading Terms?

    EXW, FOB, CIF, FFR, CNF

6, After-sale Service?

     CNBM provides the services and support you need for every step of our cooperation. We're the business partner you can trust.

     For any problem, please kindly contact us at any your convenient time.

We'll reply you in our first priority within 24 hours.

Q: What are the challenges in machining special steel alloys?
Machining special steel alloys poses several challenges due to their unique properties and characteristics. One of the primary challenges is their high hardness. Special steel alloys are often heat-treated to enhance their mechanical properties, resulting in increased hardness. This makes it difficult to machine them as traditional cutting tools may wear out quickly or become dull. The high hardness also increases the risk of tool breakage, leading to frequent tool changes and increased production downtime. Another challenge is the presence of abrasive elements in special steel alloys. Some alloys contain elements like chromium, tungsten, or vanadium, which can cause rapid tool wear and degradation. These abrasive elements can cause excessive tool wear, leading to reduced cutting tool life and increased machining costs. Moreover, the presence of these elements can result in poor surface finish and dimensional accuracy if not properly managed during the machining process. Special steel alloys also tend to have low thermal conductivity, which makes it difficult to dissipate heat generated during machining. This can lead to high temperatures at the cutting zone, resulting in thermal expansion and distortion of the workpiece. The heat can also affect the cutting tool, reducing its life and efficiency. Managing the heat generated during machining is critical to prevent workpiece deformation and maintain dimensional accuracy. Furthermore, the presence of alloying elements can make these steel alloys prone to work hardening. This means that the material becomes harder and more difficult to cut as the machining process progresses. Work hardening can lead to increased cutting forces, tool wear, and reduced surface finish. To overcome this challenge, machining parameters such as cutting speed, feed rate, and depth of cut must be carefully optimized to avoid excessive work hardening. In conclusion, machining special steel alloys presents challenges such as high hardness, abrasive elements, low thermal conductivity, and work hardening. Overcoming these challenges requires the use of specialized cutting tools, efficient cooling and lubrication systems, optimized machining parameters, and careful selection of machining strategies. By addressing these challenges effectively, manufacturers can achieve accurate and efficient machining of special steel alloys.
Q: How is special steel manufactured?
Special steel is manufactured through a process called steelmaking, which involves melting iron ore along with other alloying elements such as chromium, nickel, or molybdenum, to achieve the desired properties. The molten steel is then refined, cast into various shapes, and subjected to heat treatment to enhance its strength, hardness, and other mechanical properties.
Q: How is special steel used in the production of precision tools?
Special steel is used in the production of precision tools due to its exceptional properties, such as high hardness, toughness, and wear resistance. These characteristics allow for the creation of tools with precise cutting edges that can withstand heavy loads and maintain their sharpness for longer periods of time. Additionally, the special steel's ability to resist deformation and retain dimensional stability ensures that precision tools can consistently deliver accurate and precise results, making them essential for various industries like manufacturing, automotive, and aerospace.
Q: How does special steel perform in high-temperature fatigue?
Special steel is renowned for its outstanding performance in conditions of high-temperature fatigue. When exposed to elevated temperatures, special steel demonstrates qualities such as remarkable strength, exceptional resistance to creep, and superior thermal stability. These characteristics render it highly dependable and capable of enduring extended periods of exposure to extreme temperatures without significant deterioration in performance. One of the key factors contributing to special steel's exceptional performance in high-temperature fatigue is its distinct composition. Typically, it contains alloying elements like chromium, molybdenum, and vanadium, which enhance its strength at high temperatures and resistance to thermal fatigue. These alloying elements create stable carbides and nitrides that aid in preserving the material's structural integrity even under intense heat and cyclic loading. Furthermore, special steel undergoes specialized heat treatment procedures, such as quenching and tempering, to further enhance its properties in high-temperature fatigue. These treatments augment the material's microstructure, resulting in increased strength, toughness, and resistance to thermal fatigue. In conditions of high-temperature fatigue, special steel exhibits remarkable fatigue strength and durability, even when subjected to cyclic loading at elevated temperatures. Its high-temperature fatigue limit surpasses that of regular steel significantly, enabling it to withstand repetitive stress and strain without experiencing premature failure. This makes special steel an ideal choice for applications involving high-temperature environments, such as gas turbines, heat exchangers, and aerospace components. To conclude, special steel delivers exceptional performance in high-temperature fatigue conditions due to its unique composition, specialized heat treatment processes, and superior mechanical properties. Its high strength, resistance to creep, and thermal stability make it a reliable and long-lasting material for applications requiring prolonged exposure to extreme temperatures.
Q: Is special steel resistant to chemical corrosion?
Special steel, which is also known as stainless steel, is typically resistant to chemical corrosion. It is an alloy that contains at least 10.5% chromium. The presence of chromium in the steel forms a protective layer on the surface, preventing corrosion. This layer is stable and shields the steel from reacting with chemicals and corrosive substances. Furthermore, special steel may contain other elements like nickel, molybdenum, and titanium. These elements enhance its resistance to chemical corrosion, enabling the steel to withstand exposure to acids, alkalis, salts, and other corrosive agents commonly found in industrial and environmental settings. Nevertheless, it is important to consider that the resistance of special steel to chemical corrosion can vary based on its grade and composition. Different grades of stainless steel offer different levels of corrosion resistance. Therefore, it is crucial to select the appropriate grade depending on the intended application and the specific corrosive environment. To summarize, although special steel generally resists chemical corrosion, the level of resistance can differ depending on the grade and composition. Hence, it is essential to assess specific requirements and seek advice from experts to choose the most suitable special steel for a particular application.
Q: What are the main factors affecting the creep resistance of special steel?
The main factors affecting the creep resistance of special steel are the alloy composition, the microstructure, and the processing conditions. The specific combination of alloying elements and their concentrations significantly influence the material's ability to resist deformation under elevated temperatures and constant stress. Additionally, the microstructure, including grain size and distribution, plays a crucial role in determining the material's creep resistance. The processing conditions, such as heat treatment and thermal cycling, can further affect the creep performance by altering the material's microstructure and mechanical properties.
Q: How is nitriding steel used in surface hardening processes?
Nitriding steel is used in surface hardening processes by introducing nitrogen into the steel's surface, resulting in the formation of a hard and wear-resistant outer layer. This process enhances the steel's mechanical properties, such as hardness, fatigue strength, and wear resistance, making it ideal for applications where high durability and resistance to abrasion are required.
Q: How does special steel contribute to the elasticity of products?
Special steel contributes to the elasticity of products by providing a high level of tensile strength and flexibility. Its unique composition and manufacturing process allow it to withstand stress and deformation without breaking, allowing products to return to their original shape after being bent or stretched. This characteristic is crucial in various industries, such as automotive, aerospace, and construction, where the elasticity of products is essential for safety, durability, and performance.
Q: How is special steel used in the manufacturing of tools and dies?
Special steel is used in the manufacturing of tools and dies due to its exceptional properties, such as high strength, hardness, and wear resistance. These steels can withstand extreme temperatures and pressures during the forming, cutting, and shaping processes. They also have excellent dimensional stability, ensuring precise and accurate tooling. Special steel's unique composition and heat treatment capabilities allow for the production of durable and long-lasting tools and dies, which are essential for various industries like automotive, aerospace, and manufacturing.
Q: What are the properties of duplex stainless steel?
Duplex stainless steel is known for its excellent combination of corrosion resistance and high strength. It has a two-phase microstructure consisting of equal amounts of ferrite and austenite, which provides it with superior toughness and resistance to stress corrosion cracking. Additionally, duplex stainless steel offers good resistance to pitting and crevice corrosion, making it suitable for use in various harsh environments. It also exhibits good weldability and is highly durable, making it a popular choice in applications such as chemical processing, oil and gas industries, and marine environments.

Send your message to us

This is not what you are looking for? Post Buying Request

Similar products

Hot products


Hot Searches

Related keywords