• Hot Rolled Spring Steel System 1
  • Hot Rolled Spring Steel System 2
  • Hot Rolled Spring Steel System 3
Hot Rolled Spring Steel

Hot Rolled Spring Steel

Ref Price:
get latest price
Loading Port:
China Main Port
Payment Terms:
TT or LC
Min Order Qty:
50MT m.t.
Supply Capability:
600000TONS/YEAR m.t./month

Add to My Favorites

Follow us:


OKorder Service Pledge

Quality Product, Order Online Tracking, Timely Delivery

OKorder Financial Service

Credit Rating, Credit Services, Credit Purchasing

Spring Steel:

Spring steel is divided into two types, one is alloy spring steel, and other one is carbon spring steel.

Alloy spring steel is a type that is used for manufacturing springs and other elastic parts. Spring steel should have high elastic limit and ratio of yield strength and tensile strength to make sure that the springs obtain enough power of elastic deformation and can bear much load.

Types of alloy spring steel: Si-Mn spring steel, Si-Cr spring steel, Cr-Mn Spring steel, Cr-V spring steel and so on.

 

Specification of Hot Rolled Spring Steel

-Material: 55CrMnA

-Standard: GB/T 1222-1984

-Type: Spring Steel

 

Corresponding Steel Grade for Reference:

CHN, GB

JPN, JIS

GER, DIN

55CrMnA

SUP9

55Cr3

GBR, BS

FRA,FN

525A58

55Cr3

 

Chemical Composition:

C

Si

Mn

0.52~0.60

0.17~0.37

0.65~0.95

S

P

Cr

≤0.030

≤0.030

0.65~0.95

Ni

Cu

V

≤0.35

≤0.25

0.10~0.20

 

Mechanical Properties:

-Tensile Strength σb (MPa): ≥1225125

-Yield Strength σs (MPa): ≥1080 (110)

-Percentage reduction of area: ψ (%): ≥20

-Hardness:

1, Hot rolled, ≤321HB

2, Cold drawn + Heat treatment: ≤321HB

-Norm of heat treatment:

1, Quenching: 830~860.

2, Cooled by oil.

3, Tempering: 460℃~510℃.

 

Usage/Applications of Hot Rolled Spring Steel

-55CrMnA Spring Steel possesses high strength, plasticity and toughness. Its hardenability is good. The thermal sensitivity is lower than Mn-steel. The decarburizing tendency is smaller than Si-Mn steel. The outstanding characteristic is the nice hardenability, moreover, hot workability, general mechanical properties and anti-decarburizing are also good.  

-It’s used for producing large flat spring o spiral spring with big diameter that can bear much load in the industry of cars and tractors.

 

Packaging & Delivery of Hot Rolled Spring Steel:

-Packing Detail:

1, The products can be packed in bundles by steel wires.

2, The weight of each bundle no exceed normally 3 tons

-Marks: there are two types of marks.

1, Tag marks. To show customers the specifications of products, company name and logo and other information required by customers.

2, Color marks. It’s easy for customers to distinguish them from other products at destination port.

-Delivery Detail: 30~45 working days after receive buyer’s T.T. or L/C.

 

Payment:

-Invoicing on theoretical weight or actual weight as customer’s request.

-FOB, CFR or CIF.

-Terms of payment: T.T. or L/C at sight.

 

Photos of Hot Rolled Spring Steel:

Hot Rolled Spring Steel

Hot Rolled Spring Steel

Q: What is the impact of titanium in special steel alloys?
Titanium is a highly versatile and valuable element when it comes to special steel alloys. Its addition to steel alloys has a significant impact on their properties and performance. One of the major impacts of titanium in special steel alloys is improved strength and durability. Titanium has a high strength-to-weight ratio, which means that even a small amount of titanium can greatly enhance the strength of the steel alloy. This is particularly beneficial in applications where high strength and resistance to deformation or fatigue are required, such as in aerospace or automotive industries. Moreover, titanium also contributes to the corrosion resistance of steel alloys. It forms a protective oxide layer on the surface of the steel, preventing or reducing the effects of corrosion caused by exposure to various environmental factors such as moisture, chemicals, or saltwater. This corrosion resistance is especially crucial in industries where steel is exposed to harsh conditions, such as marine or offshore applications. Another significant impact of titanium in special steel alloys is its ability to improve heat resistance. Titanium has a high melting point and excellent thermal stability, making steel alloys with titanium suitable for high-temperature applications. This is particularly important in industries like power generation, where steel components must withstand extreme temperatures without losing their structural integrity. Furthermore, titanium imparts excellent weldability to steel alloys. It acts as a deoxidizer, reducing the presence of impurities and improving the quality of welds. This is highly advantageous in manufacturing processes where welding is involved, as it ensures strong and reliable joints. In summary, the impact of titanium in special steel alloys is multifaceted and highly beneficial. It enhances the strength, durability, and corrosion resistance of steel, while also improving its heat resistance and weldability. These properties make titanium an invaluable element in the development of high-performance steel alloys for a wide range of industries.
Q: What is the role of special steel in the defense industry?
Special steel plays a critical role in the defense industry due to its unique properties and capabilities. One of the primary functions of special steel in defense is to provide strength and durability to various components and structures of military equipment, such as tanks, armored vehicles, naval vessels, and aircraft. These steels are designed to withstand extreme conditions, including high impact and ballistic resistance, making them essential for ensuring the safety and protection of military personnel. Another significant role of special steel in the defense industry is its contribution to the production of cutting-edge weaponry. Special steel alloys are used to manufacture firearms, missiles, and artillery systems, providing the necessary strength, hardness, and corrosion resistance required for such applications. These steels allow for the precise manufacturing of complex weapon systems, ultimately enhancing their performance, accuracy, and reliability. Moreover, special steel also plays a vital role in the defense industry by enabling the development of advanced communication and electronics technologies. Steel alloys with specific magnetic properties are utilized in the production of radar systems, satellite components, and other electronic devices critical for military surveillance, intelligence, and communication purposes. These steels enable the efficient transmission and reception of signals, enhancing the overall capabilities of defense systems. In summary, special steel is indispensable in the defense industry due to its strength, durability, and unique properties. It provides the necessary foundation for the construction of military equipment, enhances the performance of weapons, and enables the development of advanced communication and electronics technologies. By utilizing special steel, the defense industry can ensure the safety, effectiveness, and technological superiority of military operations.
Q: Can special steel be used in the energy sector?
Yes, special steel can be used in the energy sector. Special steel, which is engineered and designed to have specific properties like high strength, corrosion resistance, and heat resistance, can be utilized in various applications within the energy sector. It can be used for manufacturing components of power plants, such as turbines, generators, boilers, and heat exchangers, as well as in offshore oil and gas platforms, pipelines, and wind turbines. The unique properties of special steel make it suitable for withstanding the demanding conditions and requirements of the energy sector, ensuring reliability and longevity of these critical infrastructure components.
Q: How does special steel perform in abrasive wear conditions?
Special steel performs well in abrasive wear conditions due to its high hardness and toughness. It has excellent resistance to abrasion, which allows it to withstand the rubbing, scraping, and grinding that occurs in abrasive environments. The unique composition and heat treatment of special steel enhance its ability to resist wear and maintain its structural integrity, making it an ideal choice for applications where abrasive wear is a concern.
Q: Can special steel be used in the sporting goods manufacturing industry?
Yes, special steel can be used in the sporting goods manufacturing industry. Special steel, with its unique properties such as high strength, durability, and corrosion resistance, can be utilized for producing various sporting goods like golf clubs, tennis rackets, bike frames, and baseball bats. These steels can enhance performance, improve longevity, and provide better control and accuracy in sports equipment.
Q: What are the different surface hardening techniques for special steel?
To enhance the mechanical properties and improve the wear resistance of special steel, there exists a range of surface hardening techniques that can be employed. These techniques encompass: 1. Case hardening: Through diffusion, carbon or nitrogen is introduced into the steel surface. By subjecting the steel to an environment rich in carbon or nitrogen, the atoms disseminate into the surface layer, resulting in the creation of a hardened case while maintaining a resilient core. 2. Nitriding: The process of introducing nitrogen into the steel surface to enhance its hardness is known as nitriding. By placing the steel in an environment abundant in nitrogen at elevated temperatures, a hardened surface layer is formed, exhibiting improved resistance to wear and corrosion. 3. Carburizing: Carbon is introduced into the steel surface through carburizing. By heating the steel in an environment rich in carbon, the carbon atoms diffuse into the surface layer, leading to the development of a hardened case with heightened hardness and wear resistance. 4. Induction hardening: Utilizing an induction coil, induction hardening is a localized technique for surface hardening. The steel is heated using the induction coil and then swiftly quenched, resulting in a hardened surface layer characterized by high hardness and enhanced wear resistance. 5. Flame hardening: Flame hardening is an alternative localized method for surface hardening. The steel surface is heated using a high-temperature flame and swiftly quenched. This technique generates a hardened surface layer with increased hardness and resistance to wear. 6. Laser hardening: Laser hardening is a precise and localized surface hardening technique. By employing a laser beam to heat the desired area of the steel, followed by rapid quenching, a hardened surface layer with enhanced mechanical properties is formed. By employing these surface hardening techniques, special steel can experience significant improvements in durability, strength, and resistance to wear and corrosion, making it highly suitable for diverse industrial applications. The selection of the most suitable technique is contingent upon factors such as the desired level of hardness, the complexity of the steel component, and the specific requirements of the application.
Q: Can special steel be used for medical applications?
Yes, special steel can be used for medical applications. It is often used for surgical instruments, implants, and medical devices due to its high strength, corrosion resistance, and biocompatibility properties. Special steel alloys are carefully designed to meet the stringent requirements of the medical industry, ensuring safety, durability, and effectiveness in various medical procedures.
Q: How does special steel perform in automotive applications?
Special steel performs exceptionally well in automotive applications due to its unique properties and characteristics. It offers superior strength, durability, and resistance to wear and corrosion, making it highly suitable for critical components such as engine parts, chassis, and suspension systems. Special steel also enables the production of lightweight designs, enhancing fuel efficiency and reducing emissions. Additionally, its high heat resistance and thermal conductivity contribute to improved performance and safety in extreme conditions. Overall, the use of special steel in automotive applications ensures enhanced reliability, performance, and longevity of vehicles.
Q: How is special steel used in the production of bearings for high-speed applications?
Special steel is used in the production of bearings for high-speed applications due to its unique properties such as high strength, hardness, and resistance to wear and fatigue. These bearings are subjected to intense loads and rotational speeds, and special steel helps ensure optimal performance and longevity. The use of special steel in bearing production allows for improved precision, reduced friction, and increased durability, ultimately enabling bearings to withstand the demanding requirements of high-speed applications.
Q: What are the different surface coatings applied to special steel?
To enhance the performance and protect special steel from various environmental factors, there exist several surface coatings that can be applied. Some common options are as follows: 1. Galvanization: By applying a layer of zinc to the steel surface, galvanization provides exceptional corrosion resistance and prevents rusting. 2. Powder coating: This technique involves electrostatically spraying a dry powder onto the steel surface, which is then cured under heat. The result is a durable, decorative coating that offers excellent resistance to impact, abrasion, and corrosion. 3. Paint coating: Steel can be coated with a variety of paints, including epoxy, acrylic, polyurethane, and enamel. These coatings not only enhance the steel's appearance but also protect against corrosion and weathering. 4. Chrome plating: This process electroplates a thin layer of chromium onto the steel surface, providing excellent resistance to corrosion, wear, and abrasion. It is suitable for harsh environments. 5. Ceramic coating: Ceramic coatings can be applied using thermal spraying or plasma spraying methods. They offer high-temperature resistance, abrasion resistance, and excellent thermal insulation. As a result, they are used in industries such as aerospace and automotive. 6. Anodizing: Though commonly used for aluminum, anodizing can also be applied to certain special steel types. It involves creating an oxide layer on the steel surface through an electrochemical process. Anodizing enhances corrosion resistance and can be used for decorative purposes. These examples represent just a few of the available surface coatings for special steel. The selection of a coating depends on specific application requirements, such as corrosion resistance, wear resistance, temperature resistance, and aesthetic appearance.
REDMETAL,a well-known enterprise specializing in the production and sales of spring steel and bearing steel. Since the establishment of our company, we have been aimed to provide the customers with qualify and cheap product and the satisfatory service.

1. Manufacturer Overview

Location Jiangsu, China
Year Established 1990
Annual Output Value Above US$ 20 Million
Main Markets Mid East; Eastern Europe; North America
Company Certifications

2. Manufacturer Certificates

a) Certification Name  
Range  
Reference  
Validity Period  

3. Manufacturer Capability

a) Trade Capacity
Nearest Port Shanghai
Export Percentage 20% - 30%
No.of Employees in Trade Department 21-50 People
Language Spoken: English; Chinese
b) Factory Information
Factory Size: Above 100,000 square meters
No. of Production Lines 1
Contract Manufacturing OEM Service Offered;
Product Price Range High; Average

Send your message to us

This is not what you are looking for? Post Buying Request

Similar products

Hot products


Hot Searches

Related keywords