• Alloyed Steel Bloom/Billet Manufactured by Blast Furnace by Continue Casting Making System 1
  • Alloyed Steel Bloom/Billet Manufactured by Blast Furnace by Continue Casting Making System 2
Alloyed Steel Bloom/Billet Manufactured by Blast Furnace by Continue Casting Making

Alloyed Steel Bloom/Billet Manufactured by Blast Furnace by Continue Casting Making

Ref Price:
get latest price
Loading Port:
Tianjin
Payment Terms:
TT OR LC
Min Order Qty:
1000 m.t.
Supply Capability:
10000 m.t./month

Add to My Favorites

Follow us:


OKorder Service Pledge

Quality Product, Order Online Tracking, Timely Delivery

OKorder Financial Service

Credit Rating, Credit Services, Credit Purchasing

 Alloyed Steel Bloom/Billet Manufactured by Blast Furnace by Continue Casting Making

 

1.Structure of Alloyed Steel Bloom/Billet Manufactured by Blast Furnace by Continue Casting Making

 

Steel Billets Manufactured by Continue Casting is the raw material of all kinds of steel mill. Billet section of square, round, flat, rectangular and abnormity, etc Several, mainly related to shape of rolled products. Simple rolled section steel, choose cross section of square billet or rectangular billet. rolling The sector products such as flat steel, Angle steel, select the rectangular billet or slab. Had better profiled billet when production beams, channels, and in rolling process Lines and improve the yield. The raw material of round billet is the production of seamless tube. 


2.Main Features of Alloyed Steel Bloom/Billet Manufactured by Blast Furnace by Continue Casting Making.

      There are three shapes of the steel billets: square billet, slab, rectangular billet The Chinese billet, rectangular billet is mainly suitable for rolling hot rolled strip, building reinforced bar, Ordinary wire, high speed wire rod and various small profile. Of the slab are mainly used for rolling plate and hot coil sheet.

 

 

3. Alloyed Steel Bloom/Billet Manufactured by Blast Furnace by Continue Casting Making Images

 

 

Alloyed Steel Bloom/Billet Manufactured by Blast Furnace by Continue Casting Making

Alloyed Steel Bloom/Billet Manufactured by Blast Furnace by Continue Casting Making

 

 

 

 

4. Alloyed Steel Bloom/Billet Manufactured by Blast Furnace by Continue Casting MakingSpecification


Material standard The editor Range of thickness: 150-240 - mm + / - 5 mm width range: 880-1530 - mm + / - 20 mm Length: 3700-10000 - mm + / - 500 - mm Cross-sectional size: 64 * 64; 82 * 82; 98 * 98; 124 * 124; 120 * 150; 152 * 164; 152 * 170 mm Length: 9000 mm Section of tolerance: billet: 1.0 + / - 2.0-1.0 + / - 1.0 mm slab: width: + / - 2.0 mm thickness: + / - 3.0 mm The length tolerance: + / - 200 mm Section diagonal tolerance: 3.5-8.0 MM Billet section size protrusions requirements: < 1242 mm, do not allow; > = 1242 mm, < = 2 mm 1242 mm, < = 3 mm Beheading (shear) extension deformation: < 1242 mm billet: no control; The slab: < = 15 mm Surface tilt: no more than billet section 0.1 Bending: every 1 m length is not more than 10 mm The distortion: length < = 5 m, < = 11. ; The length of the < = 7.5 M, < = 5. Material % 3 sp/PS chemical composition: C Mn Si S P

 

5.FAQ of Alloyed Steel Bloom/Billet Manufactured by Blast Furnace by Continue Casting Making

 

We have organized several common questions for our clientsmay help you sincerely 

 

①How about your company

A world class manufacturer & supplier of castings forging in carbon steel and alloy steelis one of the large-scale professional investment casting production bases in China,consisting of both casting foundry forging and machining factory. Annually more than 8000 tons Precision casting and forging parts are exported to markets in Europe,America and Japan. OEM casting and forging service available according to customer’s requirements.

 

By affecting the processing product performance points, what type of inclusions? According to the inclusion, plastic deformation can be divided into brittle inclusions inclusions and half plastic inclusions. Brittle inclusions generally refers to those who do not have plastic deformation capacity, complex and simple oxide composite oxides, nitride and deformation of spherical, dot inclusions.Because the wire is the billet hot rolled into wire rod by drawing again after formed, request the deformation is large, so A1203, spinel, such as deformation brittle inclusions is very big to the harm of wire rod. Inclusions in steel processing through plastic deformation when have good plasticity, extends along the flow direction of the steel slits, belong to this class of SiO2 content low iron silicate, iron sulfide, manganese (Fe, Mn) S, etc.Half of the plastic inclusions generally refers to all kinds of compound aluminum silicate inclusions. Deformation behavior of non-metallic inclusions in steel is more complex, not only depend on the type of inclusions, and is closely related to the inclusion composition and deformation temperature.

 

③What is the advantage of the continue Casting steel billet comparing to the die casting steel billet?

Compared with die casting, continuous casting has the advantages of: 1. To simplify the Steel billet The production process 2. Improve the metal yield 3. Improve the quality of the billet 4. Reduces the steel worker's labor intensity 5. Save energy and reduce consumption

Steel billet is produced by the method of through three processes: It is through the steelmaking system of continuous casting equipment, directly by the molten steel pouring into billet; The second is the steelmaking system in the production of steel ingot casting billet through system of steel rolling rolling equipment or processing of steel semi-finished products; Three is the steelmaking system production of steel ingot by forging the semi-finished product processing equipment.

 

 

Q: How are steel billets different from steel ingots?
Steel billets and steel ingots, although both semi-finished steel products, vary in their shape, size, and manufacturing process. To begin with, the shape of steel billets and steel ingots differs. Steel billets generally have a square or rectangular shape, with dimensions determined by production requirements. Conversely, steel ingots possess a more irregular shape, often resembling a large block or loaf. The mold used for casting determines the shape of the ingot. Furthermore, the size of steel billets and steel ingots also varies. Billets are typically smaller in size compared to ingots. They are produced with smaller cross-sectional areas and lengths, making them suitable for further processing. In contrast, steel ingots are larger and heavier, as they are cast in molds capable of accommodating a greater volume of molten steel. Finally, the manufacturing process for steel billets and steel ingots differs. Steel billets are typically produced through continuous casting, a process in which molten steel is poured into a water-cooled mold to solidify into the desired shape. This method allows for controlled and efficient production of billets. On the other hand, steel ingots are generally produced through casting in open or closed molds, where the molten steel is poured and left to solidify. This process tends to be slower and less precise compared to continuous casting. In conclusion, steel billets and steel ingots differ in terms of their shape, size, and manufacturing process. Billets are square or rectangular in shape, smaller in size, and produced through continuous casting, whereas ingots possess an irregular shape, larger in size, and are produced through casting in molds. Both products serve as crucial raw materials for the production of various steel products.
Q: How are steel billets used in the production of wind turbine towers?
Steel billets play a crucial role in the production of wind turbine towers. These billets, which are essentially semi-finished steel products, are used as the raw material in the manufacturing process of wind turbine towers. Firstly, steel billets are carefully selected based on their specific properties such as strength, durability, and corrosion resistance. These properties are vital as wind turbine towers need to withstand strong winds, harsh weather conditions, and long-term exposure to environmental elements. Once the appropriate steel billets are chosen, they undergo a series of manufacturing processes. These processes often include heating, rolling, and shaping the billets into the desired form for wind turbine towers. Heating the steel billets to high temperatures makes them malleable and easier to shape. After the heating process, the steel billets are rolled into long cylindrical shapes, resembling the final structure of the wind turbine tower. These rolled billets are then forged and welded together to form seamless tower sections. The welding process ensures the structural integrity and stability of the tower. Furthermore, steel billets are also used in the construction of the tower's foundation. Large steel billets are embedded deep into the ground to provide a stable base for the tower. This helps to anchor the tower securely, preventing any potential movements or instability. Overall, steel billets are fundamental in the production of wind turbine towers as they provide the necessary strength and durability required for these structures. Without steel billets, it would be nearly impossible to construct wind turbine towers that can withstand the demanding conditions they are exposed to.
Q: How is the surface condition of steel billets checked?
The surface condition of steel billets is typically checked through visual inspection, where trained personnel examine the surface for any defects such as cracks, pitting, or surface irregularities. Additionally, non-destructive testing methods such as ultrasonic examination may also be used to detect any internal defects that may not be visible to the naked eye.
Q: How are steel billets used in the manufacturing of tooling?
Steel billets are used in the manufacturing of tooling as they serve as the raw material for shaping and forming various types of tools. The billets are heated, forged, and machined to create tooling components such as dies, molds, and cutting or shaping tools. The high strength and durability of steel make it an ideal choice for tooling applications as it can withstand the demanding conditions and repetitive use typically required in manufacturing processes.
Q: How do steel billets contribute to the overall sustainability of a structure?
There are several ways in which steel billets are crucial for enhancing the overall sustainability of a structure. Firstly, steel is a highly durable material with a long lifespan. This means that structures built with steel billets will have a longer service life and require fewer replacements or repairs. Consequently, the consumption of resources and materials needed for construction is reduced, resulting in minimized waste and conserved energy. Moreover, steel is 100% recyclable, allowing the steel billets to be easily recovered and reused for other purposes at the end of a structure's lifespan. Compared to producing steel from raw materials, recycling steel requires significantly less energy. As a result, greenhouse gas emissions are reduced, and carbon footprints are lower. This approach of a circular economy helps conserve resources and reduces the demand for new steel production, which has a significant environmental impact. Furthermore, steel billets contribute to the overall sustainability of a structure through their strength and versatility. With a high strength-to-weight ratio, steel can support heavy loads with less material, leading to more efficient designs and reduced material consumption. This not only conserves resources but also decreases the carbon emissions associated with the transportation and delivery of steel. Additionally, steel is a non-combustible material, offering structures built with steel billets greater resistance to fires. This enhances the safety and resilience of the structure, reducing the risk of damage or collapse during unforeseen events. Furthermore, the use of steel in structures can contribute to energy efficiency by providing a thermal mass that retains and releases heat, reducing the need for excessive heating or cooling. In conclusion, through their durability, recyclability, strength, and non-combustible properties, steel billets significantly contribute to the overall sustainability of a structure. By incorporating steel into construction, we can minimize waste, conserve resources, reduce carbon emissions, enhance safety, and improve energy efficiency. This ultimately makes structures more environmentally friendly and sustainable in the long run.
Q: Fish pole carbon cloth tcf. Vcf. Svf. Hcf. On behalf of what?
Carbon cloth classification, a semicolon after the term, usually called HVF and SVF, where SVF is divided into VCF and so on! The index of carbon fiber is T (ton), common carbon part is 20T-30T commonly. HVF is 30T-40T, SVF is 40T-60T. SVF lighter than HVF, higher strength, better elasticity of the material of products: Di 46T SVF meaning 60T ultra high strength and high modulus carbon fiber cloth, HVF carbon fiber reinforced 30T 40T strength and high modulus. But the domestic ordinary carbon fishing rod material is generally 24T carbon fiber cloth. The higher the T value, the higher the strength and elasticity of the material.
Q: What are the different types of mechanical property testing methods for steel billets?
There are several different types of mechanical property testing methods used to evaluate the quality and strength of steel billets. These methods include: 1. Tensile Testing: Tensile testing is one of the most commonly used methods to determine the mechanical properties of steel billets. It involves applying a tensile force to a small sample of the billet until it fractures. This test measures the strength, yield strength, elongation, and reduction in area of the material. 2. Impact Testing: Impact testing is used to assess the toughness and resistance to fracture of steel billets. It involves striking a notched specimen with a pendulum or hammer and measuring the energy absorbed during fracture. The results provide information about the material's ability to withstand sudden shocks or dynamic loads. 3. Hardness Testing: Hardness testing determines the resistance of the steel billet to indentation or scratching. Various methods can be employed, such as Rockwell, Brinell, or Vickers hardness testing. The results are often correlated with other mechanical properties, such as strength and ductility. 4. Charpy Testing: Charpy testing is a type of impact test specifically designed to evaluate the notch toughness of steel billets. It involves striking a notched specimen with a pendulum, and the energy absorbed during fracture is measured. This test is particularly useful in assessing the material's behavior under low-temperature conditions. 5. Bend Testing: Bend testing is performed to assess the ductility and flexibility of steel billets. It involves bending a sample around a specified radius until it fractures or shows signs of cracking. This test provides information about the material's ability to withstand deformation without breaking. 6. Fatigue Testing: Fatigue testing is used to evaluate the steel billet's resistance to cyclic loading or repeated stress. It involves subjecting a sample to a varying load, and the number of cycles required for failure is recorded. This test helps determine the material's durability and its ability to withstand long-term stress. These mechanical property testing methods play a crucial role in ensuring the quality and reliability of steel billets for various applications. By evaluating the strength, toughness, hardness, and other mechanical properties, manufacturers and engineers can make informed decisions about the suitability of the material for specific uses.
Q: How are steel billets used in the production of molds?
Steel billets are used in the production of molds as a raw material. They are melted, shaped, and cooled to form the mold, which is then used to cast various products. The steel billets provide the necessary strength and durability to withstand the high temperatures and pressures involved in the molding process.
Q: What are the potential applications of steel billets in the transportation aftermarket?
Steel billets have a wide range of potential applications in the transportation aftermarket. One of the main uses of steel billets in this industry is for the production of various components and parts for vehicles. These billets can be used to manufacture engine parts, suspension components, steering parts, and other critical components that require strength and durability. Steel billets can also be used in the manufacturing of structural components for vehicles, such as chassis frames and body panels. The high strength and rigidity of steel make it an ideal material for these applications, as it can withstand the stresses and strains experienced during vehicle operation. Furthermore, steel billets can be utilized in the production of wheels and rims for automobiles, motorcycles, and even bicycles. The superior strength and ability to withstand heavy loads make steel billets a preferred choice for wheel manufacturing, ensuring safety and reliability on the road. In addition to vehicle components and parts, steel billets can also be used in the production of rail tracks and infrastructure for railways. The strength and durability of steel make it an ideal material for rail tracks, ensuring safe and efficient transportation of goods and passengers. Overall, the potential applications of steel billets in the transportation aftermarket are vast and diverse. From manufacturing critical vehicle components to building infrastructure for railways, steel billets play a crucial role in ensuring the efficiency, safety, and reliability of transportation systems.
Q: How do steel billets contribute to the manufacturing of medical devices?
Steel billets contribute to the manufacturing of medical devices in various ways. Firstly, steel billets serve as the raw material for the production of medical devices. These billets are used as a starting point in the manufacturing process, where they are heated and shaped into the desired form using techniques like forging, casting, or rolling. The use of steel billets in medical device manufacturing offers several advantages. Steel is known for its strength, durability, and corrosion resistance, making it an ideal material for the production of medical devices that need to withstand rigorous use and maintain their integrity over time. Additionally, steel offers excellent biocompatibility, meaning it is well-tolerated by the human body, reducing the risk of adverse reactions or complications when the medical devices are implanted or used in surgical procedures. Moreover, steel billets can be easily machined and formed into complex shapes, allowing manufacturers to create intricate medical devices such as orthopedic implants, surgical instruments, or prosthetic components. Steel's versatility and malleability enable the production of devices with precise dimensions and fine details, ensuring optimal functionality and performance. Furthermore, steel billets contribute to the manufacturing of medical devices by providing a cost-effective solution. Steel is widely available and relatively affordable compared to other materials used in the medical industry, making it an attractive choice for manufacturers. The ability to produce medical devices from steel billets at a reasonable cost contributes to the accessibility and affordability of healthcare worldwide. In conclusion, steel billets play a crucial role in the manufacturing of medical devices. They provide a strong, durable, and biocompatible material that can be easily shaped and machined into complex forms. Steel's properties contribute to the production of high-quality medical devices that are capable of withstanding demanding applications while ensuring patient safety and cost-effectiveness.

Send your message to us

This is not what you are looking for? Post Buying Request

Similar products

Hot products


Hot Searches

Related keywords