Alloyed Steel Billet/Bloom by Continue Casting Blast Furnace
- Loading Port:
- Tianjin
- Payment Terms:
- TT OR LC
- Min Order Qty:
- 1000 m.t.
- Supply Capability:
- 10000 m.t./month
OKorder Service Pledge
OKorder Financial Service
You Might Also Like
Alloyed Steel Billet/Bloom by Continue Casting Blast Furnace
1.Structure of Alloyed Steel Billet/Bloom by Continue Casting Blast Furnace
Continue Casting Steel Billet Manufactured By Blasting Furnace is the raw material of all kinds of steel mill. Billet section of square, round, flat, rectangular and abnormity, etc Several, mainly related to shape of rolled products. Simple rolled section steel, choose cross section of square billet or rectangular billet. rolling The sector products such as flat steel, Angle steel, select the rectangular billet or slab. Had better profiled billet when production beams, channels, and in rolling process Lines and improve the yield. The raw material of round billet is the production of seamless tube.
2.Main Features of Alloyed Steel Billet/Bloom by Continue Casting Blast Furnace.
Continue Casting Steel Billet Manufactured By Blasting Furnace section size should meet the requirements of rolling deformation and finished product quality, but also roll strength and biting condition of restrictions. General steel Billet section height H. And the roll diameter D The ratio of the ( namely H/D) Should be less than or equal to zero 0.5 . Length of steel billet by finishing temperature, Rolling time and the length of the product Or times ruler. When heated too long accident prone to bump the furnace wall of steel, too short, furnace bottom utilization rate is not high, influence the heating furnace production. For the production Choose a variety of steel and steel billet, should consider the affinities of billet, as far as possible in order to improve the productivity of the roughing mill, simplify the stock management of workshop.
There are three shapes of the steel billets: square billet, slab, rectangular billet The Chinese billet, rectangular billet is mainly suitable for rolling hot rolled strip, building reinforced bar, Ordinary wire, high speed wire rod and various small profile. Of the slab are mainly used for rolling plate and hot coil sheet.
3. Alloyed Steel Billet/Bloom by Continue Casting Blast Furnace Images
4. Alloyed Steel Billet/Bloom by Continue Casting Blast Furnace Specification
Continue Casting Steel Billet Manufactured By Blasting Furnace rolled steel, after processing can be used for mechanical parts, forging parts, processing all kinds of steel, steel Q345B channel steel, wire rod is the role of the billet. Steel billet is used in the production of semi-finished products, generally cannot be used directly for the society. Steel billets and steel are strictly divided into standard, cannot decide to whether the business enterprise of the final product, and according to unified standards to perform the whole society. Typically, billet and the steel is relatively easy to distinguish, but for some steel billet, and have the same specification and same steel purposes (such as rolling tube billet), whether can be used for other industries, whether through steel processing process, whether through a finished product rolling mill processing to distinguish
Material standard The editor Range of thickness: 150-240 - mm + / - 5 mm width range: 880-1530 - mm + / - 20 mm Length: 3700-10000 - mm + / - 500 - mm Cross-sectional size: 64 * 64; 82 * 82; 98 * 98; 124 * 124; 120 * 150; 152 * 164; 152 * 170 mm Length: 9000 mm Section of tolerance: billet: 1.0 + / - 2.0-1.0 + / - 1.0 mm slab: width: + / - 2.0 mm thickness: + / - 3.0 mm The length tolerance: + / - 200 mm Section diagonal tolerance: 3.5-8.0 MM Billet section size protrusions requirements: < 1242 mm, do not allow; > = 1242 mm, < = 2 mm 1242 mm, < = 3 mm Beheading (shear) extension deformation: < 1242 mm billet: no control; The slab: < = 15 mm Surface tilt: no more than billet section 0.1 Bending: every 1 m length is not more than 10 mm The distortion: length < = 5 m, < = 11. ; The length of the < = 7.5 M, < = 5. Material % 3 sp/PS chemical composition: C Mn Si S P
5.FAQ of Alloyed Steel Billet/Bloom by Continue Casting Blast Furnace
We have organized several common questions for our clients,may help you sincerely:
①What kinds of the steel billet you have?
We usually export the Q195/215/235/275, size: 120*120/130*130/150*150*12000/6000mm steel billet to our customers..
②Could we get the third party quality inspecting report?
Sure, but the inspecting fee belong to our customers payment in advanced.
③What quality problem we could claim?
Any problem not meet the contract you can tell us and we will be respansible for you.
For example:The defect of billet according to its source can be divided into two categories:Lack of steelmaking and castingAnd the rolling defects caused by.From the defect of the parts and can be divided into two kinds of surface defects and internal defects.The main steel billet defectsThere should be: scar, crack, cracking and inclusions(See the non-metallic inclusions), shrinkage residual(See the shrinkage cavity), airbag, air bubble, insideCrack, burnt, internal heat, tail hole, teeth marks, folding, scratches, indentation, sag, Angle, bending(See the bending),Handle defects, torsion, crack, shear, mesh, cleaning up bad, skull patch, seam crack, split, out-of-tolerance and sizePitting, etc.
1)Airbags.Boiling steel billet shearing area appear similar to the defects of shrinkage cavity.Section on the vertical axis of symmetry of the tongueWave, wave gap in granular inclusions, blaze, discoloration, etc.Sometimes the surface of the bulge, tearing, shearing widthSuch as large surface phenomenon, finished product billet surface convex hull, cross section on the tongue shape wave, serious billet through a long hole.
- Q:How are steel billets used in the manufacturing of machinery?
- Steel billets are an essential component in the manufacturing of machinery due to their versatility and strength. These cylindrical metal bars, typically made from carbon or alloy steel, serve as the raw material that is transformed into various machine parts and components. One common application of steel billets in machinery manufacturing is for the production of machine frames and structures. The billets are heated and then hot-rolled or forged into the desired shape, ensuring the final product has the necessary strength and durability to withstand the mechanical stresses it will encounter during operation. Additionally, steel billets are used to create machine components such as gears, shafts, and axles. These parts require high tensile strength and resistance to wear and deformation, making steel billets the ideal material choice. The billets are typically machined or forged into the desired shape, ensuring precise dimensions and tolerances are met. Furthermore, steel billets can also be used in the manufacturing of machine tools, which are crucial for shaping and machining various materials. By using steel billets as the base material, machine tools can effectively handle heavy loads, provide stability, and ensure precision in the manufacturing processes. In summary, steel billets are integral to the manufacturing of machinery, as they provide the necessary strength, durability, and versatility required for the production of machine frames, components, and tools. Their ability to be shaped, machined, and forged into various forms allows for the creation of high-quality machinery that can effectively perform its intended functions.
- Q:What are the main factors affecting the hardenability of steel billets?
- The hardenability of steel billets, which refers to their ability to be hardened through heat treatment, is influenced by several key factors. These factors include the chemical composition of the steel, the rate at which it is cooled during quenching, and the size of its grains. First and foremost, the chemical composition of the steel plays a vital role in determining its hardenability. Elements like carbon, manganese, and alloying elements such as chromium, molybdenum, and nickel can have a significant impact on the steel's ability to be hardened. Higher carbon content and the presence of certain alloying elements increase the hardenability by forming carbides that aid in the formation of martensite, the hard and brittle phase responsible for the steel's hardness. The rate at which the steel is cooled during quenching is another crucial factor affecting its hardenability. Quenching involves rapidly cooling the heated steel billet, typically using a liquid medium like water or oil. The speed of cooling determines the transformation of the steel's microstructure. Faster cooling rates result in higher hardenability as they promote the formation of martensite. Conversely, slower cooling rates can lead to the formation of softer phases like ferrite or pearlite. The size of the steel's grains also impacts its hardenability. Smaller grain sizes provide more sites for the formation of martensite, resulting in improved hardenability. Grain refinement can be achieved through processes like alloying, heat treatment, and controlled cooling. Additionally, the presence of non-metallic inclusions, which act as areas of stress concentration, can also affect hardenability by promoting crack initiation and propagation during quenching. In conclusion, the main factors that influence the hardenability of steel billets are the chemical composition, cooling rate during quenching, and grain size. Understanding these factors and their interactions is crucial for achieving the desired hardness and mechanical properties in steel billets during heat treatment processes.
- Q:What are the main factors that determine the market price of steel billets?
- Several key factors influence the market price of steel billets. Firstly, the market price is determined by the dynamics of supply and demand. When there is high demand and limited supply, the price tends to increase. On the other hand, when there is low demand and an oversupply, the price may decrease. The cost of raw materials is another important factor. Steel billets are primarily made from iron ore, and its price fluctuations in the global market can impact the market price of steel billets. Increases in the cost of iron ore can lead to higher production expenses, which are then passed on to consumers. Energy costs also play a role in the market price. Steel production requires a significant amount of energy, and fluctuations in energy prices, such as those of coal or natural gas, can influence the final price of steel billets. Global economic conditions and geopolitical factors are additional factors that can significantly impact the market price. Economic growth or recession in major steel-consuming countries can affect demand, while trade policies, tariffs, or sanctions imposed by governments can disrupt the supply chain and result in price volatility. Technological advancements and innovations in the steel industry can also influence the market price. Improvements in production processes or the development of new steelmaking techniques can affect the manufacturing cost of steel billets, which ultimately impacts the market price. Lastly, currency exchange rates can affect the market price as well. If the currency of steel-producing countries strengthens against the currencies of steel-consuming countries, it can make the steel billets more expensive for foreign buyers, potentially leading to a decrease in demand and a subsequent decrease in price. In conclusion, the market price of steel billets is influenced by supply and demand dynamics, the cost of raw materials and energy, global economic conditions, technological advancements, and currency exchange rates. Understanding these factors is essential for both buyers and sellers in the steel billet market to make informed decisions and adapt to changing market conditions.
- Q:What is the role of steel billets in the manufacturing of conveyor belts?
- The manufacturing process of conveyor belts heavily relies on steel billets, which are essential in creating the various components of the belt. These billets, derived from molten steel, serve as the initial stage in production. To begin, the steel billets undergo heating and rolling processes to form thin sheets or strips, depending on the desired thickness of the conveyor belt. These sheets are then further processed to construct the core structure of the belt, providing the necessary strength and durability to withstand demanding conditions. Moreover, steel billets play a crucial role in producing the metal reinforcements within the belt. These reinforcements, typically in the form of steel cords or wires, are embedded into the belt to enhance its tensile strength, preventing stretching or breaking under heavy loads and ensuring longevity and reliability. Additionally, steel billets are utilized in manufacturing the pulley system of the belt. Pulleys are essential components that facilitate the movement of materials along the belt. Made from solid steel billets, these pulleys are machined and designed to smoothly guide the belt while maintaining proper tension. In conclusion, steel billets serve as the foundation for creating the core structure, reinforcements, and pulleys of conveyor belts. Their strength and versatility make them an ideal material for producing belts that can withstand the rigorous conditions of industrial applications, guaranteeing efficient and reliable material handling processes.
- Q:What are the future trends in steel billet production?
- Improving efficiency, sustainability, and quality are the main areas of focus for future trends in steel billet production. One significant trend is the increasing use of advanced technologies in the production process. Automation and robotics are being adopted to streamline operations, minimize human error, and enhance productivity. Artificial intelligence and machine learning algorithms are also being employed to optimize production parameters and improve overall process control. Another trend involves a shift towards greener and more sustainable practices. Steel producers are investing in technologies that reduce carbon emissions, such as electric arc furnaces (EAFs) instead of traditional blast furnaces. EAFs consume less energy and emit fewer greenhouse gases, making them a more environmentally friendly choice. Furthermore, there is a growing emphasis on recycling and circular economy principles in steel billet production. Companies are investing in scrap metal recycling technologies to reduce reliance on raw materials and minimize waste. This not only conserves resources but also reduces the carbon footprint of steel production. Quality control is also a key focus for future trends. Steel producers are implementing advanced testing and inspection techniques to ensure the highest quality standards. Non-destructive testing methods, such as ultrasonic and magnetic particle testing, are used to detect any defects or flaws in the billets. In summary, the future of steel billet production is driven by advancements in technology, a commitment to sustainability, and a dedication to delivering high-quality products. These trends aim to make the steel production process more efficient, environmentally friendly, and economically viable in the long run.
- Q:How are steel billets used in the manufacturing of railway wagons?
- Steel billets are used in the manufacturing of railway wagons as they serve as the raw material for various components such as frames, side panels, and undercarriages. These billets are first heated and then shaped into the desired form through processes like rolling or forging. The resulting components are strong, durable, and able to withstand the rigorous demands of railway transportation, ensuring the safety and reliability of the wagons.
- Q:What is the average price of steel billets?
- The average cost of steel billets may vary due to various factors such as market conditions, supply and demand dynamics, and the grade and quality of the billets. It is crucial to acknowledge that global economic influences, such as raw material expenses, energy prices, and trade policies, can cause fluctuations in the average price. To obtain an accurate understanding of the average steel billet price, it is advisable to consult industry reports, trade publications, and market analysis platforms that offer updated information on steel prices. Additionally, seeking advice from steel suppliers and manufacturers or engaging in negotiations with multiple sources can aid in determining the prevalent average price within a specific region or market.
- Q:What are the main factors affecting the microstructure of steel billets?
- The main factors affecting the microstructure of steel billets include the composition of the steel, the cooling rate during solidification, the presence of impurities or alloying elements, and the heat treatment processes applied.
- Q:What are the specifications for alloy steel billets used in the aerospace industry?
- The specifications for alloy steel billets used in the aerospace industry typically include specific chemical composition requirements, such as precise percentages of various alloying elements, to ensure desired mechanical properties and performance. These billets often need to meet stringent standards for strength, durability, and resistance to fatigue and corrosion. Additionally, they may need to adhere to specific dimensional tolerances, surface finish requirements, and undergo various testing and inspection procedures to ensure their suitability for aerospace applications.
- Q:What are the different methods of steel billet casting?
- There are several different methods of steel billet casting that are commonly used in the industry. These methods include continuous casting, ingot casting, and direct casting. Continuous casting is the most widely used method of steel billet casting. In this process, molten steel is poured into a water-cooled mold, which is usually made of copper. As the steel solidifies, a continuous billet is formed, which is then cut into desired lengths. Continuous casting allows for a high production rate and precise control over the dimensions and quality of the billets. Ingot casting is another method of steel billet casting, which involves pouring molten steel into individual molds to create ingots. These ingots are then allowed to solidify before being reheated and hot rolled into billets. Ingot casting is commonly used for small-scale production or for specialty steel alloys that require specific compositions. Direct casting, also known as strand casting, is a newer method of steel billet casting that eliminates the need for solidification and reheating processes. In this method, molten steel is directly cast into billets through a series of water-cooled copper molds. The billets are then cooled and cut to the desired lengths. Direct casting offers advantages such as reduced energy consumption and improved yield, as it eliminates the intermediate steps of ingot casting. Overall, the choice of steel billet casting method depends on factors such as production volume, desired quality, and specific requirements of the steel alloy being produced. Each method has its own advantages and limitations, and the selection of the appropriate method is crucial for ensuring efficient and cost-effective steel billet production.
1. Manufacturer Overview |
|
---|---|
Location | |
Year Established | |
Annual Output Value | |
Main Markets | |
Company Certifications |
2. Manufacturer Certificates |
|
---|---|
a) Certification Name | |
Range | |
Reference | |
Validity Period |
3. Manufacturer Capability |
|
---|---|
a)Trade Capacity | |
Nearest Port | |
Export Percentage | |
No.of Employees in Trade Department | |
Language Spoken: | |
b)Factory Information | |
Factory Size: | |
No. of Production Lines | |
Contract Manufacturing | |
Product Price Range |
Send your message to us
Alloyed Steel Billet/Bloom by Continue Casting Blast Furnace
- Loading Port:
- Tianjin
- Payment Terms:
- TT OR LC
- Min Order Qty:
- 1000 m.t.
- Supply Capability:
- 10000 m.t./month
OKorder Service Pledge
OKorder Financial Service
Similar products
Hot products
Hot Searches
Related keywords