Alloyed Steel Bloom/Billet Manufactured by Blast Furnace
- Loading Port:
- Tianjin
- Payment Terms:
- TT OR LC
- Min Order Qty:
- 1000 m.t.
- Supply Capability:
- 10000 m.t./month
OKorder Service Pledge
OKorder Financial Service
You Might Also Like
Alloyed Steel Bloom/Billet Manufactured by Blast Furnace
1.Structure of Alloyed Steel Bloom/Billet Manufactured by Blast Furnace
Steel Billets Manufactured by Continue Casting is the raw material of all kinds of steel mill. Billet section of square, round, flat, rectangular and abnormity, etc Several, mainly related to shape of rolled products. Simple rolled section steel, choose cross section of square billet or rectangular billet. rolling The sector products such as flat steel, Angle steel, select the rectangular billet or slab. Had better profiled billet when production beams, channels, and in rolling process Lines and improve the yield. The raw material of round billet is the production of seamless tube.
2.Main Features of Alloyed Steel Bloom/Billet Manufactured by Blast Furnace.
Steel Billets Manufactured by Continue Casting section size should meet the requirements of rolling deformation and finished product quality, but also roll strength and biting condition of restrictions. General steel Billet section height H. And the roll diameter D The ratio of the ( namely H/D) Should be less than or equal to zero 0.5 . Length of steel billet by finishing temperature, Rolling time and the length of the product Or times ruler. When heated too long accident prone to bump the furnace wall of steel, too short, furnace bottom utilization rate is not high, influence the heating furnace production. For the production Choose a variety of steel and steel billet, should consider the affinities of billet, as far as possible in order to improve the productivity of the roughing mill, simplify the stock management of workshop.
There are three shapes of the steel billets: square billet, slab, rectangular billet The Chinese billet, rectangular billet is mainly suitable for rolling hot rolled strip, building reinforced bar, Ordinary wire, high speed wire rod and various small profile. Of the slab are mainly used for rolling plate and hot coil sheet.
3. Alloyed Steel Bloom/Billet Manufactured by Blast Furnace Images
4. Alloyed Steel Bloom/Billet Manufactured by Blast Furnace Specification
Material standard The editor Range of thickness: 150-240 - mm + / - 5 mm width range: 880-1530 - mm + / - 20 mm Length: 3700-10000 - mm + / - 500 - mm Cross-sectional size: 64 * 64; 82 * 82; 98 * 98; 124 * 124; 120 * 150; 152 * 164; 152 * 170 mm Length: 9000 mm Section of tolerance: billet: 1.0 + / - 2.0-1.0 + / - 1.0 mm slab: width: + / - 2.0 mm thickness: + / - 3.0 mm The length tolerance: + / - 200 mm Section diagonal tolerance: 3.5-8.0 MM Billet section size protrusions requirements: < 1242 mm, do not allow; > = 1242 mm, < = 2 mm 1242 mm, < = 3 mm Beheading (shear) extension deformation: < 1242 mm billet: no control; The slab: < = 15 mm Surface tilt: no more than billet section 0.1 Bending: every 1 m length is not more than 10 mm The distortion: length < = 5 m, < = 11. ; The length of the < = 7.5 M, < = 5. Material % 3 sp/PS chemical composition: C Mn Si S P
5.FAQ of Alloyed Steel Bloom/Billet Manufactured by Blast Furnace
We have organized several common questions for our clients,may help you sincerely:
①How about your company?
A world class manufacturer & supplier of castings forging in carbon steel and alloy steel,is one of the large-scale professional investment casting production bases in China,consisting of both casting foundry forging and machining factory. Annually more than 8000 tons Precision casting and forging parts are exported to markets in Europe,America and Japan. OEM casting and forging service available according to customer’s requirements.
②What are the slab quality problem?
(1) of slab of purity (inclusion quantity, shape, distribution, etc.);(2) the surface of the casting defects (cracks, slag inclusion, porosity, etc.); (3) slab internal defects (cracks, segregation, inclusion, porosity and shrinkage cavity, etc.). Slab of purity depends mainly on molten steel into mold before processing, namely before pouring molten steel make "clean";Cast to the control process at the same time, don't let the inclusions with steel downward. Slab of purity control starts () electric furnace and converter smelting to refining outside the furnace, tundish metallurgy, protective casting and electromagnetic stirring process control of the whole process.
What are the types of non-metallic inclusions in continuous casting billet? The non-metallic inclusions in continuous casting billet, according to the generated methods can be divided into endogenous inclusions and exotic inclusions. Endogenous inclusions, mainly is pointed out that steel, ferroalloy products and pouring molten steel and air secondary oxidation in the process of product, such as aluminum oxide. Foreign inclusions, mainly to the inclusion of smelting and casting process, such as the erosion of ladle, tundish refractory, involved in the package of slag and protecting slag, shuikou washed residue, etc. The final solidification in continuous casting billet size, quantity and distribution of inclusions and is affected by the purity of molten steel in tundish, the impact of the mold injection flow depth and the movement state of the flow injection etc.For curved continuous caster, from intrados 1/4 thickness in inclusions have gathered phenomenon, this is a serious defect.Electromagnetic stirring can control the movement of molten steel in mould, and exclusion of inclusions, therefore we have to be serious study of the production of impurity and motion law.
③What is the advantage of the continue Casting steel billet comparing to the die casting steel billet?
Compared with die casting, continuous casting has the advantages of: 1. To simplify the Steel billet The production process 2. Improve the metal yield 3. Improve the quality of the billet 4. Reduces the steel worker's labor intensity 5. Save energy and reduce consumption
Steel billet is produced by the method of through three processes: It is through the steelmaking system of continuous casting equipment, directly by the molten steel pouring into billet; The second is the steelmaking system in the production of steel ingot casting billet through system of steel rolling rolling equipment or processing of steel semi-finished products; Three is the steelmaking system production of steel ingot by forging the semi-finished product processing equipment.
- Q: What is the standard tolerance for steel billet dimensions?
- The standard tolerance for steel billet dimensions can vary depending on the specific industry and application. However, commonly accepted tolerances for steel billet dimensions typically range from +/- 0.5% to +/- 2% of the specified dimensions.
- Q: What are the safety precautions in handling steel billets?
- Some safety precautions in handling steel billets include wearing personal protective equipment such as gloves, safety glasses, and steel-toed boots, as well as using proper lifting techniques to avoid strain or injury. It is important to ensure that the work area is clear of any obstacles or debris and to use appropriate tools and equipment when moving or transporting the billets. Additionally, workers should be trained in proper handling procedures and be aware of potential hazards such as sharp edges or unstable stacking arrangements. Regular inspections and maintenance of machinery and equipment involved in handling steel billets are also necessary to prevent accidents or malfunctions.
- Q: How do steel billets contribute to the construction of bridges and infrastructure?
- Steel billets are essential to the construction of bridges and infrastructure as they serve as the raw material for manufacturing various structural components. These billets, which are heated and then shaped into desired forms, provide the necessary strength and durability required to withstand heavy loads and harsh environmental conditions. They are frequently used to fabricate beams, columns, and other critical elements that make up the skeletal framework of bridges and infrastructure projects. Additionally, steel billets can be further processed to produce reinforcing bars, which enhance the structural integrity of concrete structures, such as foundations and roadways. Overall, steel billets play a vital role in ensuring the structural stability and longevity of bridges and infrastructure, making them indispensable in the construction industry.
- Q: What is the role of steel billets in the manufacturing of wind turbines?
- Steel billets play a crucial role in the manufacturing of wind turbines as they are used as the raw material for producing various components of the turbine, such as tower sections, base frames, and rotor hubs. The high strength and durability of steel make it an ideal choice for withstanding the demanding operating conditions of wind turbines, including strong winds and extreme weather. The billets are melted, cast, and then further processed to create these components, ensuring the structural integrity and longevity of the turbines.
- Q: How are steel billets used in the manufacturing of hydraulic equipment?
- Hydraulic equipment relies heavily on steel billets, which are vital in the manufacturing process. These semi-finished steel forms play a crucial role in producing hydraulic components like cylinders, valves, and pumps. To ensure the durability and performance of hydraulic equipment, the composition and quality of steel billets are carefully considered. The steel's strength, ductility, and corrosion resistance are important factors in the selection process. Once suitable steel billets are acquired, they undergo various manufacturing processes to transform them into the desired hydraulic components. For instance, the billets can be heated and forged or extruded to shape them into cylinders or valve bodies. This shaping process ensures the components meet the required dimensions, have smooth surfaces, and maintain structural integrity. Additionally, steel billets may be subjected to machining operations, such as drilling or milling, to create precise holes and intricate features. This guarantees proper fluid flow and functionality in the equipment. Furthermore, heat treatment can be applied to steel billets to enhance their mechanical properties. Annealing, quenching, or tempering processes can be utilized to achieve specific hardness, toughness, or elasticity characteristics, depending on the hydraulic equipment's requirements. In summary, steel billets serve as the raw material for manufacturing hydraulic equipment, providing the necessary strength, durability, and versatility for these critical components. Through careful selection, shaping, machining, and heat treatment, high-quality hydraulic equipment is produced, capable of withstanding the challenging conditions and pressures of various industrial applications.
- Q: Can steel billets be used in the production of automotive components?
- Yes, steel billets can be used in the production of automotive components. Steel billets are raw, semi-finished steel products that can undergo further processing, such as rolling, forging, or machining, to create various automotive parts like engine blocks, suspension components, gears, and more. The use of steel billets allows for the production of high-strength and durable automotive components, making them a popular choice in the automotive industry.
- Q: How are steel billets inspected before they are used in production?
- Steel billets are inspected before they are used in production through a rigorous quality control process. This typically includes visual inspection to check for surface defects and dimensional accuracy. Additionally, non-destructive testing techniques such as ultrasonic testing or magnetic particle inspection are employed to detect internal flaws or cracks. Chemical analysis is performed to ensure the steel composition meets the required specifications. These inspections help ensure the integrity and quality of the billets before they are used in production.
- Q: What are the different types of steel billet surface defects?
- During the manufacturing process, various steel billet surface defects may arise. These defects have the potential to impact the steel's quality and performance, thus necessitating their identification and resolution to safeguard the final product's integrity. 1. Scale: Oxidation during heating and rolling gives rise to a widespread defect known as scale. This defect manifests as a thin layer of iron oxide on the billet's surface, which can be readily eliminated through descaling procedures. 2. Cracks: Another common defect is cracks, which can emerge on the billet's surface. These cracks can be caused by factors such as uneven cooling, excessive stress, or improper handling. Due to their ability to compromise structural integrity, cracked billets necessitate repair or disposal. 3. Pitting: Pitting is characterized by shallow depressions or pits on the billet's surface. It can arise due to impurities in the steel, inadequate cooling, or corrosion. Pitting diminishes strength and heightens susceptibility to corrosion. 4. Lamination: Lamination defects occur when the billet experiences poor bonding during manufacturing, leading to the presence of layers or separation. This defect undermines the steel's mechanical properties, potentially resulting in failure under stress. 5. Inclusions: Non-metallic substances, such as slag, oxides, or other impurities, can become trapped within the billet during manufacturing, causing inclusions. Inclusions weaken the steel and decrease its ductility, rendering it more prone to cracking or breaking. 6. Scratches: Superficial defects like scratches may arise during billet handling or transportation. While they may not significantly impact overall structural integrity, they can concentrate stress in localized areas, potentially leading to failure in specific applications. 7. Decarburization: Decarburization occurs when the billet's surface loses its carbon content during the heating process. This defect reduces hardness and strength in the affected region, impacting the steel's performance. Manufacturers and inspectors must possess knowledge of these various steel billet surface defects to ensure the production of high-quality steel products. Regular inspections, quality control measures, and appropriate corrective actions are vital in minimizing and addressing these defects, thereby guaranteeing the desired steel performance and longevity.
- Q: What industries rely heavily on steel billets?
- Steel billets are an essential raw material for numerous industries, with construction being one of them. The construction industry relies on steel billets to fabricate structural components like beams, columns, and reinforcement bars, which are crucial for constructing buildings, bridges, and infrastructure projects. The strength and durability provided by steel billets are necessary for these construction applications. Another industry heavily dependent on steel billets is the automotive industry. They are used to manufacture different automotive parts, including engine components, chassis, and suspension systems. Steel billets are ideal for producing parts that can endure rigorous conditions and ensure vehicle safety due to their high strength and versatility. The oil and gas industry is also heavily reliant on steel billets for the production of pipelines, drill pipes, and other equipment used in exploration, extraction, and transportation processes. Steel billets are preferred in this industry for their corrosion resistance, high pressure resistance, and ability to withstand extreme temperatures. Furthermore, the machinery and equipment manufacturing industry extensively utilizes steel billets as the primary material for producing a wide range of machinery, including industrial machinery, agricultural equipment, and heavy-duty machinery. Steel billets provide the necessary strength, toughness, and machinability required for these applications. Moreover, the aerospace industry heavily depends on steel billets for manufacturing various aircraft components like landing gear, structural frames, and engine parts. Steel billets are chosen for their high strength-to-weight ratio, heat resistance, and ability to withstand the demanding conditions of aerospace applications. In conclusion, steel billets are indispensable in various industries such as construction, automotive, oil and gas, machinery and equipment manufacturing, and aerospace. Their unique properties ensure the production of strong, durable, and reliable products, making them vital for these industries.
- Q: How do steel billets contribute to the sustainability of construction projects?
- Steel billets contribute to the sustainability of construction projects in several ways. Firstly, steel is a highly durable and long-lasting material, ensuring that structures built with steel billets have a longer lifespan and require less maintenance and repairs over time. This longevity reduces the need for frequent reconstruction, saving resources and minimizing waste. Additionally, steel is a recyclable material, meaning that steel billets can be reused or repurposed at the end of their life cycle, reducing the demand for new steel production and lowering the environmental impact. Lastly, steel's strength-to-weight ratio allows for lighter and more efficient designs, resulting in reduced material consumption and energy usage during construction. Overall, the use of steel billets in construction projects promotes sustainability by enhancing durability, facilitating recycling, and optimizing resource efficiency.
Send your message to us
Alloyed Steel Bloom/Billet Manufactured by Blast Furnace
- Loading Port:
- Tianjin
- Payment Terms:
- TT OR LC
- Min Order Qty:
- 1000 m.t.
- Supply Capability:
- 10000 m.t./month
OKorder Service Pledge
OKorder Financial Service
Similar products
Hot products
Hot Searches
Related keywords