• 150x150 mm Steel Billet -Q215 Grade factory sale directly System 1
  • 150x150 mm Steel Billet -Q215 Grade factory sale directly System 2
150x150 mm Steel Billet -Q215 Grade factory sale directly

150x150 mm Steel Billet -Q215 Grade factory sale directly

Ref Price:
get latest price
Loading Port:
China main port
Payment Terms:
TT OR LC
Min Order Qty:
1000 m.t.
Supply Capability:
18321 m.t./month

Add to My Favorites

Follow us:


OKorder Service Pledge

Quality Product, Order Online Tracking, Timely Delivery

OKorder Financial Service

Credit Rating, Credit Services, Credit Purchasing

Specification

Grade:
Q195/Q215/Q235/Q275
Qaulity:
own factory, stable quality
Payment terms:
100%Irrevercable L/C at sight or T/T
Delivery time:
within 45 days after receiving the L/C or advanced T/T payment.
Price term:
FOB/CIF/ CFR according to clients requirements
Tolerance:
Strictly according to the G/B and JIS standard

Steel billets have distinct characteristics as compared with already furnished steel bars and products. 

Billets have a specific grain structure, which enables the metal to be processed more intricately. Steel 

billets are also known for their malleability and ductility, especially when exposed to varying temperatures 

during shaping and molding.

 

The billet is mainly divided into two kinds from the shape: 

Slab: cross section width and height of the ratio of the larger, mainly used for rolling plate. 

 

Size :100mm to 165mm

Length:6~12meters 

Grade: Q195/Q215/Q235/Q275

Gade:

Standard

C(%)

Mn(%)

S(%)

P(%)

Si(%)

Q195

≤0.12

≤0.50

≤0.040

≤0.035

≤0.30

Q235

≤0.20

≤1.40

≤0.045

≤0.045

≤0.35

Q275

≤0.22

≤1.50

≤0.045

≤0.045

≤0.35

20MnSi

0.17-0.25

1.2-1.6

≤ 0.050

≤ 0.050

0.40-0.80

3SP

0.14-0.22

0.40-0.85

≤ 0.050

≤ 0.040

0.05-0.15

5SP

0.28-0.37

0.50-1.00

≤ 0.050

≤ 0.040

0.15-0.30

 

150x150 mm Steel Billet -Q215 Grade factory sale directly

150x150 mm Steel Billet -Q215 Grade factory sale directly

150x150 mm Steel Billet -Q215 Grade factory sale directly

Our service :

We have a plant and professional team to provide our best service, from the start of production until the 

loading into the vessel, we have a complete quality follow up procedure, to assure our products arrives to the customer with satisfaction. Welcome new and old customers 

to contact us for future business relationships! We will give you a surpise price.

 

Packing : 

Within 30 days

1.Standard export package 
2.In bundles with steel strips 
3.As the requirements of the customers

FAQ:

Q: What is payment terms?
A: FOB 30% T/T IN ADVANCE AS DEPOSIT AND 70% T/T BEFORE SHIPMENT 
CIF and CFR 30% T/T IN ADVANCE AS DEPOSIT AND 70% T/T AS THE COPY OF B/L OR L/C AT SIGHT

 

Q:How to guarantee the quality of the products?

A:We have established the international advanced quality management system,every link from raw material 

to final product we have strict quality test;We resolutely put an end to unqualified products flowing into the market. 

At the same time, we will provide necessary follow-up service assurance.

 

Q:How long can we receive the product after purchase?

A :In the purchase of product within three working days, We will arrange the factory delivery as soon as possible. 

The pecific time of receiving is related to the state and position of customers.

 

 

 

 

 

Q: How are steel billets used in the production of mining components?
Steel billets play a vital role in the mining component production process. They serve as the initial stage in the manufacturing of diverse mining equipment and components. To begin with, steel billets are melted and cast into specific shapes and sizes to meet the mining industry's requirements. These billets are subjected to extremely high temperatures and then poured into molds to achieve the desired shape. This casting process enables the creation of various mining components like gears, shafts, and valves. Once the steel billets have been cast into the desired shape, they undergo further processing to enhance their strength and durability. This involves employing different techniques such as forging, where the billets are exposed to high pressure and heat to enhance their mechanical properties. Forged steel components are widely used in mining applications due to their exceptional strength and resistance to wear and tear. Additionally, steel billets are frequently machined to attain precise dimensions and finishes necessary for mining components. Machining encompasses cutting, drilling, and shaping the billets using specialized tools and machinery. This step guarantees that the final mining components meet the precise specifications required for efficient and reliable operation in mining environments. In general, steel billets are indispensable in the production of mining components as they serve as the raw material from which these components are manufactured. The versatility and durability of steel make it an ideal choice for mining applications, where equipment is subjected to demanding conditions. By commencing with steel billets and employing various manufacturing processes, mining companies can produce high-quality components that are crucial for the efficient and safe operation of mining activities.
Q: How are steel billets used in the manufacturing of packaging equipment?
Steel billets are an important component in the manufacturing of packaging equipment. These billets serve as the raw material for producing various parts and components of packaging machinery. Firstly, steel billets are typically used to fabricate the frames and structures of packaging equipment. The high strength and durability of steel make it an ideal choice for constructing the sturdy framework that supports the entire machine. This ensures that the packaging equipment can withstand the rigors of continuous operation and heavy loads. Additionally, steel billets are also used to manufacture key components such as gears, shafts, and rollers. These components are essential for the proper functioning of packaging machinery, enabling the movement and rotation required for packaging products efficiently. Steel's excellent mechanical properties, including high tensile strength and resistance to wear and tear, make it suitable for these critical parts. Moreover, steel billets are often utilized in the production of cutting and forming tools used in packaging equipment. These tools are responsible for shaping and cutting various materials, such as cardboard or plastic, to create packaging containers or wrap products. Steel's hardness and ability to retain sharp edges make it an ideal material for crafting these tools, ensuring precise and efficient packaging operations. In summary, steel billets are integral to the manufacturing of packaging equipment as they are used to create the frames, components, and tools necessary for the efficient and reliable operation of packaging machinery. Their strength, durability, and versatility make steel billets a preferred choice in the packaging industry.
Q: How are steel billets cut into desired lengths?
Various cutting techniques are commonly used to cut steel billets into desired lengths. One of the most frequently employed methods is saw cutting, where a high-speed circular saw with a carbide or diamond-tipped blade is utilized. By securing the billet in place, the saw blade is brought down to create the required length. Another method is torch cutting, which involves the use of an oxy-fuel torch. This torch produces a high-temperature flame directed onto the billet, causing it to melt and be cut through. Torch cutting is preferred for larger and thicker steel billets, as it allows for greater flexibility in cutting irregular shapes or angles. Moreover, plasma cutting is another technique utilized for cutting steel billets. It employs a plasma torch that generates an electrically conductive plasma arc. This arc melts the steel and blows away the molten metal, resulting in a precise and clean cut. Plasma cutting is particularly beneficial for thicker steel billets or intricate shapes and designs. In summary, the choice of cutting technique for steel billets depends on factors such as size, thickness, precision, accuracy, and specific requirements of the end product.
Q: How are steel billets recycled?
Steel billets are recycled through a process called electric arc furnace (EAF) steelmaking. In this process, the steel billets, which are large solid blocks of steel, are melted down in an electric arc furnace. Once melted, impurities are removed, and the molten steel is then poured into molds to form new billets. These recycled steel billets can be used to produce various steel products, reducing the need for raw materials and minimizing waste.
Q: What is the typical composition of steel billets?
The typical composition of steel billets consists of primarily iron and carbon, with small amounts of other elements such as manganese, silicon, and sulfur.
Q: What are the specifications for stainless steel billets used in the food industry?
The specifications for stainless steel billets used in the food industry typically include a specific grade of stainless steel, such as 304 or 316, which have high corrosion resistance. The billets need to be of a certain size and shape, based on the requirements of the food processing equipment. Additionally, they should meet certain quality standards, such as being free from impurities, having a smooth surface finish, and being certified food-grade material.
Q: What are the different types of defects in steel billets?
There are several types of defects that can occur in steel billets, which are essentially semi-finished steel products that are typically used as raw materials for various manufacturing processes. These defects can arise during the production or handling of billets and can affect their mechanical properties, structural integrity, and overall quality. Some common types of defects found in steel billets include: 1. Surface defects: These defects are typically visible on the outer surface of the billet and can include scratches, cracks, pits, or scale. Surface defects can occur due to improper handling, storage, or transportation of the billets, or as a result of poor manufacturing processes. 2. Internal defects: Also known as sub-surface defects, these occur within the cross-section of the billet and are not visible to the naked eye. Internal defects can include blowholes, inclusions, segregations, or voids. These defects can be a result of impurities in the raw materials, improper casting or solidification processes, or inadequate quality control measures. 3. Dimensional defects: These defects refer to deviations in the dimensions of the billet from the specified requirements. This can include variations in length, width, or thickness beyond the acceptable tolerances. Dimensional defects can be caused by factors such as improper cutting, rolling, or cooling processes during billet production. 4. Chemical composition defects: These defects occur when the steel billet does not meet the required chemical composition specifications. This could be due to impurities in the raw materials, improper mixing or alloying processes, or inadequate quality control during the production phase. 5. Mechanical defects: These defects affect the mechanical properties of the steel billet, such as its strength, toughness, or ductility. Mechanical defects can result from improper heat treatment, quenching, or tempering processes, or from inadequate quality control during the manufacturing process. It is important to detect and minimize these defects as they can adversely affect the performance and reliability of the final steel products that are made from these billets. Quality control measures, such as regular inspection and testing, can help identify and rectify any defects in steel billets, ensuring the production of high-quality finished products.
Q: What is the billet price in China today?
In the short term is still the main shock, the domestic price rise compared to the previous 10 yuan / ton, the price is not the same in each region, so you still have to carefully check the price, from the upstream iron ore, domestic ore prices stabilize, without much change, with the real estate back to temperature. Building materials tend to be stable, the price is good to pick up the trend, the overall no big changes, specific to my steel network detailed inquiries, information here will be updated every day
Q: What are the different surface defects found in alloy steel billets?
There are several different surface defects that can be found in alloy steel billets. These defects can occur during the production process and can have an impact on the quality and performance of the final product. Some of the common surface defects found in alloy steel billets include: 1. Scale: Scale is a thin layer of oxide that forms on the surface of the billet during the heating and cooling process. It can be caused by exposure to air or by the presence of impurities in the steel. Scale can negatively affect the surface finish and can also lead to corrosion. 2. Cracks: Cracks can occur on the surface of the billet due to various reasons such as improper cooling, excessive stress, or improper handling. These cracks can weaken the structural integrity of the billet and can lead to failure during subsequent processing or in the final product. 3. Pits: Pits are small depressions or cavities that can be found on the surface of the billet. They can be caused by the presence of impurities or by the reaction of the steel with the environment. Pits can affect the surface finish and can also act as stress concentration points, leading to further damage or failure. 4. Laminations: Laminations are layers or sheets of non-metallic material that can be found within the billet. They can occur due to incomplete bonding during the production process or due to the presence of impurities in the steel. Laminations can weaken the billet and can lead to failure under load. 5. Inclusions: Inclusions are non-metallic particles or impurities that can be found within the steel. They can be introduced during the production process or can be present in the raw materials. Inclusions can affect the mechanical properties of the steel and can lead to reduced strength, toughness, and ductility. 6. Decarburization: Decarburization is the loss of carbon from the surface of the steel. It can occur during the heating process or due to exposure to air. Decarburization can result in reduced hardness and strength in the affected area. It is important to detect and address these surface defects in alloy steel billets to ensure the production of high-quality and reliable products. Various inspection and testing methods, such as visual inspection, ultrasonic testing, and magnetic particle inspection, can be employed to identify and assess these defects.
Q: How are steel billets used in the manufacturing of machine parts?
Steel billets are an essential raw material in the manufacturing of machine parts. These billets are solid, semi-finished steel products that are cast into specific shapes and sizes. The process of using steel billets involves various stages. Firstly, the steel billets are heated in a furnace to a specific temperature, which softens the metal and makes it more malleable. Once the billets reach the desired temperature, they are ready for further processing. Next, the heated billets are transferred to a rolling mill, where they undergo a process called hot rolling. In this process, the billets are passed through a series of rollers, which apply pressure and shape them into desired forms such as bars, rods, or sheets. The hot rolling process ensures that the steel billets achieve the required dimensions and surface finish. After hot rolling, the shaped steel billets are further processed through different techniques such as cutting, forging, or machining to fabricate machine parts. These parts can include gears, shafts, valves, or any other component required for machinery. The use of steel billets in the manufacturing of machine parts offers several advantages. Firstly, steel billets are known for their high strength and durability, making them ideal for producing parts that can withstand heavy loads and harsh operating conditions. Additionally, the malleability of steel billets allows for the creation of intricate shapes and designs, ensuring the production of complex machine parts. Moreover, steel billets can be easily customized to meet specific requirements. They can be alloyed with other metals or undergo various heat treatments to enhance their properties such as hardness, corrosion resistance, or wear resistance. This versatility of steel billets makes them suitable for a wide range of machine parts across different industries. In conclusion, steel billets play a crucial role in the manufacturing of machine parts. Through processes such as hot rolling, cutting, forging, and machining, steel billets are transformed into various shapes and sizes to create durable and high-quality components for machinery. The versatility and strength of steel billets make them an indispensable raw material in the manufacturing industry.

Send your message to us

This is not what you are looking for? Post Buying Request

Similar products

Hot products


Hot Searches

Related keywords