• 150x150 mm Steel Billet -Q215 Grade factory sale directly System 1
  • 150x150 mm Steel Billet -Q215 Grade factory sale directly System 2
150x150 mm Steel Billet -Q215 Grade factory sale directly

150x150 mm Steel Billet -Q215 Grade factory sale directly

Ref Price:
get latest price
Loading Port:
China main port
Payment Terms:
TT OR LC
Min Order Qty:
1000 m.t.
Supply Capability:
18321 m.t./month

Add to My Favorites

Follow us:


OKorder Service Pledge

Quality Product, Order Online Tracking, Timely Delivery

OKorder Financial Service

Credit Rating, Credit Services, Credit Purchasing

Specification

Grade:
Q195/Q215/Q235/Q275
Qaulity:
own factory, stable quality
Payment terms:
100%Irrevercable L/C at sight or T/T
Delivery time:
within 45 days after receiving the L/C or advanced T/T payment.
Price term:
FOB/CIF/ CFR according to clients requirements
Tolerance:
Strictly according to the G/B and JIS standard

Steel billets have distinct characteristics as compared with already furnished steel bars and products. 

Billets have a specific grain structure, which enables the metal to be processed more intricately. Steel 

billets are also known for their malleability and ductility, especially when exposed to varying temperatures 

during shaping and molding.

 

The billet is mainly divided into two kinds from the shape: 

Slab: cross section width and height of the ratio of the larger, mainly used for rolling plate. 

 

Size :100mm to 165mm

Length:6~12meters 

Grade: Q195/Q215/Q235/Q275

Gade:

Standard

C(%)

Mn(%)

S(%)

P(%)

Si(%)

Q195

≤0.12

≤0.50

≤0.040

≤0.035

≤0.30

Q235

≤0.20

≤1.40

≤0.045

≤0.045

≤0.35

Q275

≤0.22

≤1.50

≤0.045

≤0.045

≤0.35

20MnSi

0.17-0.25

1.2-1.6

≤ 0.050

≤ 0.050

0.40-0.80

3SP

0.14-0.22

0.40-0.85

≤ 0.050

≤ 0.040

0.05-0.15

5SP

0.28-0.37

0.50-1.00

≤ 0.050

≤ 0.040

0.15-0.30

 

150x150 mm Steel Billet -Q215 Grade factory sale directly

150x150 mm Steel Billet -Q215 Grade factory sale directly

150x150 mm Steel Billet -Q215 Grade factory sale directly

Our service :

We have a plant and professional team to provide our best service, from the start of production until the 

loading into the vessel, we have a complete quality follow up procedure, to assure our products arrives to the customer with satisfaction. Welcome new and old customers 

to contact us for future business relationships! We will give you a surpise price.

 

Packing : 

Within 30 days

1.Standard export package 
2.In bundles with steel strips 
3.As the requirements of the customers

FAQ:

Q: What is payment terms?
A: FOB 30% T/T IN ADVANCE AS DEPOSIT AND 70% T/T BEFORE SHIPMENT 
CIF and CFR 30% T/T IN ADVANCE AS DEPOSIT AND 70% T/T AS THE COPY OF B/L OR L/C AT SIGHT

 

Q:How to guarantee the quality of the products?

A:We have established the international advanced quality management system,every link from raw material 

to final product we have strict quality test;We resolutely put an end to unqualified products flowing into the market. 

At the same time, we will provide necessary follow-up service assurance.

 

Q:How long can we receive the product after purchase?

A :In the purchase of product within three working days, We will arrange the factory delivery as soon as possible. 

The pecific time of receiving is related to the state and position of customers.

 

 

 

 

 

Q: What are the main factors that determine the pricing strategy of steel billets manufacturers?
The main factors that determine the pricing strategy of steel billets manufacturers include the cost of raw materials such as iron ore and coal, production and operational costs, market demand and competition, global economic conditions, government policies and regulations, and the overall industry dynamics. Additionally, factors like technological advancements, transportation and logistics costs, currency exchange rates, and the level of vertical integration within the manufacturing process can also impact pricing strategies.
Q: How do steel billets contribute to the manufacturing of consumer electronics?
The versatility and durability of steel billets make them an essential component in the manufacturing of consumer electronics. These semi-finished steel products are hot-rolled into different shapes and sizes, allowing for a wide range of applications. One way in which steel billets contribute to the manufacturing of consumer electronics is by creating casings and structural components. Steel's strength and rigidity make it ideal for providing structural support and protecting electronic devices. Whether it's mobile phones, laptops, or gaming consoles, steel billets are used to produce outer casings that safeguard internal components from damage. Furthermore, steel billets are also used in the production of connectors and terminals found in consumer electronics. These small yet crucial parts enable the flow of electricity between different components, ensuring the smooth functioning of electronic devices. Steel's excellent electrical conductivity and resistance to corrosion make it a reliable material for these connectors, guaranteeing optimal performance and longevity. Moreover, steel billets contribute to the manufacturing of consumer electronics by being utilized in the fabrication of heat sinks. Heat sinks are essential in electronic devices as they dissipate excess heat generated by the components, preventing overheating and potential damage. Steel's thermal conductivity and heat resistance properties make it an ideal material for these heat sinks, effectively transferring heat away from critical components and ensuring the reliability and longevity of electronic devices. In conclusion, steel billets play a vital role in the manufacturing of consumer electronics by providing the necessary strength, durability, and thermal conductivity for various applications. Whether it's in the production of casings, connectors, or heat sinks, steel billets contribute to the overall quality and functionality of electronic devices, ensuring a seamless user experience.
Q: How are steel billets forged into shape?
The process of hot forging is utilized to shape steel billets. It entails heating the billet to a temperature that enables easy manipulation, typically ranging from 1100 to 1250 degrees Celsius. Once heated, the billet is positioned on a die, which is a specially designed tool with a cavity that imparts the desired shape onto the final product. Pressure is exerted on the billet by a large mechanical or hydraulic press, compelling it to fill the die cavity. This pressure induces the steel to flow and take the shape of the die, resulting in the intended form of the forged item. Depending on the product's size and complexity, the pressure applied during forging can reach several thousand tons. Throughout the forging process, the steel billet undergoes plastic deformation, causing its internal structure to rearrange and the metal grains to align. This grain alignment enhances the mechanical properties of the forged product, increasing its strength and durability. To achieve the final dimensions and features, additional operations such as trimming, piercing, or punching may be conducted after the initial shaping. These post-forging operations can be carried out while the steel is still hot or after it has cooled down. Once the desired shape is attained, the forged product is slowly cooled to alleviate any residual stresses and prevent cracking. This cooling process, known as annealing, enhances the metallurgical properties of the steel and improves its overall performance. To summarize, the hot forging process involves heating the steel billet, placing it on a die, applying high pressure to shape it, and subsequently cooling it to optimize its mechanical properties. This process enables the transformation of steel into various intricate shapes, making it a versatile and extensively used material across multiple industries.
Q: What are the potential applications of steel billets in the automotive industry?
Due to their exceptional strength and durability, steel billets offer a wide range of potential applications in the automotive industry. One notable use is in the manufacturing of automotive components such as engine blocks, crankshafts, and transmission parts. These components necessitate a material that can endure high temperatures, heavy loads, and repetitive stress, which steel billets can provide. Another significant application is in the production of chassis and body panels. Steel billets are frequently employed to construct the structural framework of a vehicle, ensuring safety and stability by delivering the necessary strength and rigidity. Additionally, steel billets can be shaped and sized in various ways, permitting the customization of chassis components to meet the specific requirements of different vehicle models. Steel billets are also utilized in the production of suspension systems and steering mechanisms. These parts require a material capable of absorbing vibrations, damping shocks, and providing precise control. Steel billets possess these properties, making them an ideal choice for these essential automotive components. Furthermore, steel billets find applications in the production of exhaust systems due to their ability to withstand high temperatures and corrosive environments. The resistance of steel to rust and corrosion guarantees the longevity of the exhaust system, contributing to the overall performance and efficiency of the vehicle. In conclusion, the potential applications of steel billets in the automotive industry are extensive. From engine components to chassis parts, suspension systems to exhaust systems, steel billets offer the required strength, durability, and versatility to meet the demanding needs of the automotive sector.
Q: What are the factors affecting the price of steel billets?
The price of steel billets can be affected by various factors. Firstly, the balance between supply and demand plays a significant role. If the demand for steel billets is high and the supply is limited, the price will rise. On the other hand, if the supply exceeds the demand, the price will decrease. Additionally, the cost of raw materials used in the production of steel billets, such as iron ore and coal, can greatly impact the price. Fluctuations in the prices of these raw materials can lead to changes in production costs, which in turn affect the price of steel billets. Furthermore, energy prices have a direct impact on the price of steel billets as their production requires a significant amount of energy. If energy prices increase, the cost of production for steel billets will also rise, resulting in a higher price. Transportation costs also play a role in determining the final price of steel billets. Factors like fuel prices, distance, and transportation infrastructure can impact the costs involved in transporting steel billets from the manufacturing plant to the market, thereby influencing the price. Government regulations and trade policies, such as import/export duties, tariffs, and quotas, can significantly affect the price of steel billets. These policies can restrict or facilitate the movement of steel billets between countries, impacting the supply and demand dynamics and, subsequently, the price. Moreover, fluctuations in currency exchange rates can influence the price of steel billets, as they are traded globally. If the currency in which steel billets are traded weakens against other currencies, the price may increase to compensate for the decreased value of the currency. Lastly, market speculation and investor sentiment can also influence the price of steel billets. Economic indicators, geopolitical events, and investor expectations can drive buying or selling behavior, leading to price fluctuations. It is important to recognize that these factors are interconnected and can interact with each other, resulting in a complex and dynamic market for steel billets.
Q: What are the different surface treatments for improved formability in steel billets?
Some of the different surface treatments for improved formability in steel billets include hot rolling, cold rolling, annealing, and pickling. These treatments help to enhance the plasticity and ductility of the steel, making it easier to shape and form into desired products.
Q: What is the typical hardness of a steel billet?
The hardness of a steel billet can vary depending on different factors, including the type of steel, the manufacturing process, and the intended use. Steel billets are typically made to have a certain level of hardness to ensure they are suitable for further processing and applications. To measure hardness in steel, the Rockwell hardness scale is commonly used. This scale assigns a numerical value based on how deeply an indenter penetrates the material. On the Rockwell C scale (HRC), steel billets usually have a hardness ranging from 20 to 70. Higher values indicate greater hardness. However, it is important to consider that the desired hardness can change depending on the intended use of the billet. For instance, if the billet will be used in structural applications or as a raw material for further processing, it may have a lower hardness to make shaping and forming easier. On the other hand, if the billet will be used in applications that require high strength and wear resistance, such as tool or machinery component production, it may have a higher hardness. Ultimately, the typical hardness of a steel billet will depend on the specific requirements and specifications of its intended application. To determine the appropriate hardness range for a particular steel billet, it is crucial to consult relevant standards or technical specifications.
Q: What are the main factors affecting the microstructure of steel billets?
The main factors affecting the microstructure of steel billets include the composition of the steel, the cooling rate during solidification, the presence of impurities or alloying elements, and the heat treatment processes applied.
Q: What are the market trends and growth prospects for steel billets?
Steel billets play a vital role in the steel industry as they serve as the primary material for various downstream applications. The growth and market trends of steel billets are greatly influenced by factors like global economic growth, infrastructure development, and the demand for steel in different sectors. One notable market trend for steel billets is the increasing demand from the construction industry. With the rapid urbanization and infrastructure development in emerging economies, there is a rising need for steel-intensive construction projects. Steel billets are extensively used in the construction of bridges, buildings, and other infrastructure projects, which drives the demand for this product. Another market trend is the growing demand for steel billets in the automotive industry. The automotive sector is a major consumer of steel, and as the industry shifts towards lightweight and high-strength materials, the demand for steel billets is expected to increase. Steel billets are used in the production of various automotive components, including engine parts, chassis, and suspension systems. Furthermore, the increasing focus on renewable energy sources such as wind and solar power is expected to drive the demand for steel billets. Steel components are required for wind turbines and solar panel structures, and as renewable energy projects expand globally, the demand for steel billets is likely to experience significant growth. In terms of growth prospects, the steel billets market is expected to witness steady growth in the coming years. The Asia-Pacific region, particularly China and India, is projected to dominate the market due to their robust construction and infrastructure sectors. These countries have extensive urbanization projects and ongoing infrastructure development plans, which will contribute to the demand for steel billets. Additionally, the recovery of the global economy after the COVID-19 pandemic is expected to boost the demand for steel billets. As economies bounce back and industrial activities regain momentum, the demand for steel in various sectors, including construction, automotive, and energy, will increase, positively impacting the steel billets market. However, it is important to note that market trends and growth prospects for steel billets can be influenced by factors like fluctuations in raw material prices, trade policies, and environmental regulations. Furthermore, the increasing adoption of alternative materials such as aluminum and composites in certain applications may pose a challenge to the growth of the steel billets market. In conclusion, the market trends for steel billets are driven by the demand from the construction, automotive, and renewable energy sectors. The growth prospects for this market are promising, particularly in the Asia-Pacific region as economies recover from the pandemic and infrastructure projects gain momentum. Nevertheless, challenges such as fluctuations in raw material prices and competition from alternative materials should also be taken into consideration.
Q: What are the factors that affect the quality of steel billets?
There are several factors that can affect the quality of steel billets, which are semi-finished metal products used in the production of various steel products. Some of the key factors include: 1. Raw materials: The quality of steel billets is heavily influenced by the quality of the raw materials used in their production. The composition of the steel, such as the percentage of carbon and other alloying elements, plays a crucial role in determining the final quality of the billets. 2. Manufacturing process: The manufacturing process used to produce steel billets can significantly impact their quality. Factors such as the temperature, pressure, and duration of the heating and cooling processes, as well as the rate of solidification, can affect the internal structure and mechanical properties of the billets. 3. Quality control measures: The implementation of effective quality control measures throughout the production process is essential for ensuring the quality of steel billets. Regular inspections, testing, and monitoring of critical parameters, such as dimensions, surface finish, and chemical composition, help identify any deviations from the desired specifications and allow for corrective actions to be taken. 4. Equipment and technology: The quality of the equipment and technology used in the production of steel billets can have a significant impact on their quality. Advanced machinery and techniques, such as continuous casting or vacuum degassing, can improve the homogeneity and cleanliness of the billets, resulting in higher-quality products. 5. Environmental conditions: Environmental factors, such as temperature, humidity, and cleanliness of the production environment, can also affect the quality of steel billets. Contaminants, such as dust, pollutants, or moisture, can adversely impact the surface finish and overall quality of the billets. 6. Handling and storage: Proper handling and storage practices are crucial for maintaining the quality of steel billets. Any mishandling, such as dropping or rough handling, can lead to surface defects or internal damage. Similarly, improper storage conditions, such as exposure to moisture or corrosive substances, can deteriorate the quality of the billets. In conclusion, the quality of steel billets is influenced by a combination of factors, including the raw materials, manufacturing process, quality control measures, equipment and technology, environmental conditions, and handling and storage practices. By carefully considering and optimizing these factors, steel manufacturers can produce high-quality billets that meet the desired specifications and customer requirements.

Send your message to us

This is not what you are looking for? Post Buying Request

Similar products

Hot products


Hot Searches

Related keywords