Continue Casting Steel Billets Manufactured By Blasting Furnace
- Loading Port:
- Qingdao
- Payment Terms:
- TT OR LC
- Min Order Qty:
- 1000 m.t.
- Supply Capability:
- 10000 m.t./month
OKorder Service Pledge
OKorder Financial Service
You Might Also Like
Continue Casting Steel Billets Manufactured By Blasting Furnace
1.Structure of Continue Casting Steel Billets Manufactured By Blasting Furnace
Continue Casting Steel Billets Manufactured By Blasting Furnace is the raw material of all kinds of steel mill. Billet section of square, round, flat, rectangular and abnormity, etc Several, mainly related to shape of rolled products. Simple rolled section steel, choose cross section of square billet or rectangular billet. rolling The sector products such as flat steel, Angle steel, select the rectangular billet or slab. Had better profiled billet when production beams, channels, and in rolling process Lines and improve the yield. The raw material of round billet is the production of seamless tube.
2.Main Features of Continue Casting Steel Billets Manufactured By Blasting Furnace.
Continue Casting Steel Billet Manufactured By Blasting Furnace section size should meet the requirements of rolling deformation and finished product quality, but also roll strength and biting condition of restrictions. General steel Billet section height H. And the roll diameter D The ratio of the ( namely H/D) Should be less than or equal to zero 0.5 . Length of steel billet by finishing temperature, Rolling time and the length of the product Or times ruler. When heated too long accident prone to bump the furnace wall of steel, too short, furnace bottom utilization rate is not high, influence the heating furnace production. For the production Choose a variety of steel and steel billet, should consider the affinities of billet, as far as possible in order to improve the productivity of the roughing mill, simplify the stock management of workshop.
3. Continue Casting Steel Billets Manufactured By Blasting Furnace Images
4. Continue Casting Steel Billets Manufactured By Blasting Furnace Specification
Continue Casting Steel Billet Manufactured By Blasting Furnace rolled steel, after processing can be used for mechanical parts, forging parts, processing all kinds of steel, steel Q345B channel steel, wire rod is the role of the billet. Steel billet is used in the production of semi-finished products, generally cannot be used directly for the society. Steel billets and steel are strictly divided into standard, cannot decide to whether the business enterprise of the final product, and according to unified standards to perform the whole society. Typically, billet and the steel is relatively easy to distinguish, but for some steel billet, and have the same specification and same steel purposes (such as rolling tube billet), whether can be used for other industries, whether through steel processing process, whether through a finished product rolling mill processing to distinguish
Material standard The editor Range of thickness: 150-240 - mm + / - 5 mm width range: 880-1530 - mm + / - 20 mm Length: 3700-10000 - mm + / - 500 - mm Cross-sectional size: 64 * 64; 82 * 82; 98 * 98; 124 * 124; 120 * 150; 152 * 164; 152 * 170 mm Length: 9000 mm Section of tolerance: billet: 1.0 + / - 2.0-1.0 + / - 1.0 mm slab: width: + / - 2.0 mm thickness: + / - 3.0 mm The length tolerance: + / - 200 mm Section diagonal tolerance: 3.5-8.0 MM Billet section size protrusions requirements: < 1242 mm, do not allow; > = 1242 mm, < = 2 mm 1242 mm, < = 3 mm Beheading (shear) extension deformation: < 1242 mm billet: no control; The slab: < = 15 mm Surface tilt: no more than billet section 0.1 Bending: every 1 m length is not more than 10 mm The distortion: length < = 5 m, < = 11. ; The length of the < = 7.5 M, < = 5. Material % 3 sp/PS chemical composition: C Mn Si S P
There are three shapes of the steel billets: square billet, slab, rectangular billet The Chinese billet, rectangular billet is mainly suitable for rolling hot rolled strip, building reinforced bar, Ordinary wire, high speed wire rod and various small profile. Of the slab are mainly used for rolling plate and hot coil sheet.
5.FAQ of Continue Casting Steel Billets Manufactured By Blasting Furnace
We have organized several common questions for our clients,may help you sincerely:
①How could we get the quotation by internet?
You can send you inquiry through our website: www.okorder.com or you can email to me dirrectly.
②What about the quality certificate report?
We will send you the original quality certificate from the steel mill.
③How about your facotry's annual capacity?
Our capacity is about 1000,000tons, and if you need more we can supply to you too.
- Q: What are the different types of steel billet surface treatments?
- There are several different types of steel billet surface treatments, including pickling, shot blasting, and painting. Pickling involves removing impurities and oxides from the surface of the billet using an acid solution. Shot blasting is a process in which small metallic or abrasive particles are blasted onto the surface of the billet to remove rust, scale, and other contaminants. Painting involves applying a protective coating or layer of paint to the surface of the billet to prevent corrosion and improve its appearance.
- Q: What are the main alloying elements used in steel billet production?
- Steel billet production utilizes various alloying elements, such as carbon, manganese, silicon, and chromium. The primary alloying element, carbon, plays a crucial role in augmenting the steel's strength and hardness. Meanwhile, manganese is incorporated to enhance the steel's toughness and hardenability. Silicon is introduced to fortify the steel against corrosion and oxidation. Lastly, chromium is employed to heighten the steel's hardness, corrosion resistance, and wear resistance. Throughout the production process, these alloying elements are meticulously regulated and added to the steel to attain the desired properties and attributes in the ultimate steel billets.
- Q: How are steel billets used in the production of railway components?
- Steel billets are an integral part of the production process for railway components. These billets, which are essentially semi-finished steel products, are used as the raw material for manufacturing various railway components such as rails, wheels, axles, and other structural parts. To produce railway components, the steel billets are first heated to a specific temperature to make them more malleable. This heating process is crucial as it allows the steel to be easily shaped and formed into the desired component. Once the billets have reached the required temperature, they are then transferred to the next stage of the production process. Here, they are subjected to various processes such as rolling, forging, and machining to transform them into the final shape and size required for the specific railway component. For instance, in the production of railway rails, the heated steel billets are passed through a series of rolling mills where they are gradually shaped and elongated into the desired rail profile. Similarly, for the production of wheels and axles, the billets are forged and machined to achieve the required dimensions and surface finish. The use of steel billets in the production of railway components ensures that the final products are strong, durable, and capable of withstanding the heavy loads and stresses associated with railway operations. The quality and characteristics of the steel billets play a vital role in determining the performance and longevity of the railway components. Overall, steel billets are crucial in the production of railway components as they provide the raw material that is shaped, formed, and processed to create the final products that are essential for the safe and efficient functioning of the railway system.
- Q: How are steel billets inspected for surface finish?
- Steel billets are typically inspected for surface finish using visual inspection methods, such as the naked eye or with the aid of magnifying devices. The surface is examined for any defects, such as cracks, scratches, pits, or any irregularities that may affect the quality of the steel. Additionally, the billets may also undergo non-destructive testing techniques, such as ultrasonic testing or magnetic particle inspection, to further ensure the absence of any hidden flaws in the surface finish.
- Q: How does the carbon content affect the properties of a steel billet?
- The carbon content in a steel billet has a significant impact on its properties. Higher carbon content results in increased hardness and strength, making the steel more suitable for applications requiring high durability and wear resistance. However, higher carbon content also reduces the steel's ductility and toughness, making it more prone to brittleness and cracking. On the other hand, lower carbon content enhances the steel's ductility and toughness, but at the expense of reduced hardness and strength. Therefore, the carbon content must be carefully selected to achieve the desired balance of properties for specific applications.
- Q: How are steel billets used in the production of forgings?
- Steel billets are an essential component in the production of forgings. They serve as the initial raw material that undergoes a series of processes to transform into the desired forged product. Firstly, the steel billets are heated to a specific temperature to make them more malleable and easier to work with. This process is known as preheating and is crucial as it allows for easier shaping and deformation during the forging process. Next, the heated steel billets are placed into a forging press or hammer, where they are subjected to immense pressure and force. This pressure causes the billets to deform and take on the desired shape. The forging press applies compressive forces to the billets, while the hammer strikes them repeatedly to achieve the desired shape. During the forging process, the steel billets undergo plastic deformation, meaning they change shape without breaking. This deformation allows for the elimination of any internal defects or inconsistencies within the billet, resulting in a stronger and more reliable final forged product. Once the desired shape is achieved, the forged product is cooled down, either through air cooling or quenching, to stabilize its structure and enhance its mechanical properties. This cooling process helps to increase the strength and hardness of the forged product. In summary, steel billets play a crucial role in the production of forgings. They are heated, shaped under immense pressure, and then cooled to create the final forged product. The use of steel billets in the forging process enables the production of durable, high-quality forged products with superior strength and reliability.
- Q: What is the typical composition of steel billets?
- The typical composition of steel billets can vary depending on the specific requirements and intended use. However, in general, steel billets are primarily composed of iron and carbon, with other elements added to enhance certain properties. The carbon content in steel billets is typically around 0.1-0.3%. In addition to iron and carbon, steel billets often contain small amounts of other elements such as manganese, silicon, sulfur, and phosphorus. Manganese helps improve the strength and hardness of the steel while also promoting better heat treatment response. Silicon is commonly added to enhance the steel's fluidity during casting. Sulfur and phosphorus are impurities that need to be minimized as they can negatively affect the steel's machinability and mechanical properties. Furthermore, alloying elements such as chromium, nickel, molybdenum, and vanadium may also be present in steel billets to impart specific properties. For instance, chromium improves corrosion resistance, nickel enhances toughness and ductility, molybdenum increases high-temperature strength, and vanadium improves wear resistance. Overall, the composition of steel billets is carefully controlled to achieve the desired mechanical, physical, and chemical properties required for the subsequent processing and final applications of the steel.
- Q: What are the specifications for alloy steel billets used in the defense industry?
- The specifications for alloy steel billets used in the defense industry typically include requirements for high strength, durability, and resistance to corrosion and impact. Additionally, they may specify the alloy composition, heat treatment processes, dimensional tolerances, and surface finish, among other parameters, to ensure the billets meet the specific performance needs of defense applications.
- Q: What are the challenges faced by the steel billet industry?
- The steel billet industry faces several challenges, including fluctuating raw material costs, intense competition from alternative materials, and the need for continuous technological advancements to remain efficient and sustainable. Additionally, market demand volatility, trade barriers, and regulatory compliance are significant challenges that impact the industry's growth and profitability.
- Q: How does the composition of steel affect the properties of steel billets?
- The properties of steel billets are determined by the composition of steel, which is a critical factor. Steel is primarily composed of iron and carbon, with small amounts of other elements like manganese, silicon, and sulfur. The physical and mechanical properties of steel billets are greatly influenced by the percentage of carbon and the presence of other alloying elements. Strength is one of the key properties affected by the composition of steel. By increasing the carbon content, the strength of steel is enhanced, making it suitable for applications that require high tensile strength, such as construction beams and automotive parts. The presence of alloying elements like manganese and silicon can also improve the strength and hardness of steel. Ductility and toughness are also affected by the composition of steel. Ductility refers to the ability of steel to deform under tensile stress without fracturing, while toughness is its ability to withstand impact and resist fracture. Higher carbon content tends to reduce ductility and toughness, making the steel more brittle. Therefore, for applications that require good ductility and toughness, it is preferred to have lower carbon content and the addition of alloying elements like nickel, chromium, and molybdenum. The composition of steel also influences its corrosion resistance. The addition of elements like chromium and nickel can significantly enhance the steel's resistance to corrosion, making it suitable for applications in harsh environments or exposed to corrosive substances like seawater. Stainless steel, for example, contains a high percentage of chromium, which forms a protective oxide layer on the surface, preventing corrosion. Machinability and weldability are other properties affected by the composition of steel. Higher carbon content may reduce machinability due to increased hardness, while alloying elements like sulfur and phosphorus can improve machinability. Similarly, certain elements can affect the weldability of steel, as they may cause cracking or other defects during welding. In conclusion, the composition of steel billets has a significant impact on their properties. The percentage of carbon and the presence of other alloying elements influence the strength, ductility, toughness, corrosion resistance, machinability, and weldability of steel. Therefore, it is crucial to carefully consider the desired properties and select the appropriate steel composition for various industrial applications.
Send your message to us
Continue Casting Steel Billets Manufactured By Blasting Furnace
- Loading Port:
- Qingdao
- Payment Terms:
- TT OR LC
- Min Order Qty:
- 1000 m.t.
- Supply Capability:
- 10000 m.t./month
OKorder Service Pledge
OKorder Financial Service
Similar products
Hot products
Hot Searches
Related keywords