• Steel Billets/Blooms by Continue Casting Blast Furnace System 1
  • Steel Billets/Blooms by Continue Casting Blast Furnace System 2
Steel Billets/Blooms by Continue Casting Blast Furnace

Steel Billets/Blooms by Continue Casting Blast Furnace

Ref Price:
get latest price
Loading Port:
Tianjin
Payment Terms:
TT OR LC
Min Order Qty:
1000 m.t.
Supply Capability:
10000 m.t./month

Add to My Favorites

Follow us:


OKorder Service Pledge

Quality Product, Order Online Tracking, Timely Delivery

OKorder Financial Service

Credit Rating, Credit Services, Credit Purchasing

 

 Steel Billets/Blooms by Continue Casting Blast Furnace

 

1.Structure of  Steel Billets/Blooms by Continue Casting Blast Furnace

 

Continue Casting Steel Billet Manufactured By Blasting Furnace is the raw material of all kinds of steel mill. Billet section of square, round, flat, rectangular and abnormity, etc Several, mainly related to shape of rolled products. Simple rolled section steel, choose cross section of square billet or rectangular billet. rolling The sector products such as flat steel, Angle steel, select the rectangular billet or slab. Had better profiled billet when production beams, channels, and in rolling process Lines and improve the yield. The raw material of round billet is the production of seamless tube. 


2.Main Features of Steel Billets/Blooms by Continue Casting Blast Furnace.

Continue Casting Steel Billet Manufactured By Blasting Furnace section size should meet the requirements of rolling deformation and finished product quality, but also roll strength and biting condition of restrictions. General steel Billet section height H. And the roll diameter D The ratio of the ( namely H/D) Should be less than or equal to zero 0.5 . Length of steel billet by finishing temperature, Rolling time and the length of the product Or times ruler. When heated too long accident prone to bump the furnace wall of steel, too short, furnace bottom utilization rate is not high, influence the heating furnace production. For the production Choose a variety of steel and steel billet, should consider the affinities of billet, as far as possible in order to improve the productivity of the roughing mill, simplify the stock management of workshop.

      There are three shapes of the steel billets: square billet, slab, rectangular billet The Chinese billet, rectangular billet is mainly suitable for rolling hot rolled strip, building reinforced bar, Ordinary wire, high speed wire rod and various small profile. Of the slab are mainly used for rolling plate and hot coil sheet.

 

 

3.  Steel Billets/Blooms by Continue Casting Blast Furnace Images

 

 

 

Steel Billets/Blooms by Continue Casting Blast Furnace

Steel Billets/Blooms by Continue Casting Blast Furnace

 

 

 

4.  Steel Billets/Blooms by Continue Casting Blast FurnaceSpecification

 Continue Casting Steel Billet Manufactured By Blasting Furnace  rolled steel, after processing can be used for mechanical parts, forging parts, processing all kinds of steel, steel Q345B channel steel, wire rod is the role of the billet. Steel billet is used in the production of semi-finished products, generally cannot be used directly for the society. Steel billets and steel are strictly divided into standard, cannot decide to whether the business enterprise of the final product, and according to unified standards to perform the whole society. Typically, billet and the steel is relatively easy to distinguish, but for some steel billet, and have the same specification and same steel purposes (such as rolling tube billet), whether can be used for other industries, whether through steel processing process, whether through a finished product rolling mill processing to distinguish

Material standard The editor Range of thickness: 150-240 - mm + / - 5 mm width range: 880-1530 - mm + / - 20 mm Length: 3700-10000 - mm + / - 500 - mm Cross-sectional size: 64 * 64; 82 * 82; 98 * 98; 124 * 124; 120 * 150; 152 * 164; 152 * 170 mm Length: 9000 mm Section of tolerance: billet: 1.0 + / - 2.0-1.0 + / - 1.0 mm slab: width: + / - 2.0 mm thickness: + / - 3.0 mm The length tolerance: + / - 200 mm Section diagonal tolerance: 3.5-8.0 MM Billet section size protrusions requirements: < 1242 mm, do not allow; > = 1242 mm, < = 2 mm 1242 mm, < = 3 mm Beheading (shear) extension deformation: < 1242 mm billet: no control; The slab: < = 15 mm Surface tilt: no more than billet section 0.1 Bending: every 1 m length is not more than 10 mm The distortion: length < = 5 m, < = 11. ; The length of the < = 7.5 M, < = 5. Material % 3 sp/PS chemical composition: C Mn Si S P

 

5.FAQ of  Steel Billets/Blooms by Continue Casting Blast Furnace

 

We have organized several common questions for our clientsmay help you sincerely 

 

①How about your company

A world class manufacturer & supplier of castings forging in carbon steel and alloy steelis one of the large-scale professional investment casting production bases in China,consisting of both casting foundry forging and machining factory. Annually more than 8000 tons Precision casting and forging parts are exported to markets in Europe,America and Japan. OEM casting and forging service available according to customer’s requirements.

 

②How to guarantee the quality of the products

We have established the international advanced quality management systemevery link from raw material to final product we have strict quality testWe resolutely put an end to unqualified products flowing into the market. At the same time, we will provide necessary follow-up service assurance.

 

③How do you determine the billet section size?

 Determination of billet section size in addition to considering the deformation of rolled piece to have enough quantity to meet the finished productThe quality requirements, but also should consider to roll strength and rolling bite into the limitations. The deformation size has a great influence on the product performance.Can make the metal internal organization and deformationPerformance can not meet the quality requirements.Such as high speed steel must have enough deformation,The carbide networkTo be broken or heavy rail and seamlessSteel pipeBy the total elongation coefficient of steel ingot to the finished product usually must alsoGuarantee up to50). 

Q: Are there any alternative materials to steel billets in certain applications?
There exist several alternative materials to steel billets in certain applications, encompassing the following: 1. Aluminum: Exhibiting a lightweight nature and resistance to corrosion, aluminum serves as a prevalent substitute for steel in situations where reducing weight holds significance, particularly in the aerospace industry. 2. Copper: Possessing ductility and high conductivity, copper frequently finds usage in electrical and plumbing applications, offering an alternative to steel billets when elevated electrical conductivity becomes necessary. 3. Titanium: As a lightweight and robust material, titanium commonly serves in scenarios requiring both strength and resistance to corrosion, notably in the automotive and aerospace industries. 4. Composite materials: Carbon fiber reinforced polymers and similar composite materials increasingly serve as alternatives to steel in critical applications where weight reduction and high strength prove imperative, such as aircraft construction and high-performance sports equipment. 5. Plastic: For applications not demanding substantial strength or durability, plastic can substitute steel billets. Plastic showcases a lightweight quality, cost-effectiveness, and ease of molding into diverse shapes. When selecting an alternative material to steel billets, it remains crucial to consider the specific requirements of each application, as each material possesses its distinct properties and limitations.
Q: What are the main challenges in steel billet production?
Manufacturers and producers face several key challenges in the production of steel billets. One of the primary hurdles is the need to guarantee a consistent and uniform quality for the billets. These semi-finished products are further processed into various steel items, and any irregularities or variations in their quality can lead to defects or failures in the final products. Consequently, it is crucial to maintain strict quality control measures throughout the production process. Another significant challenge revolves around optimizing the production process to meet desired quantity and quality targets while minimizing costs. This entails efficiently utilizing resources such as raw materials, energy, and labor. Additionally, striking a balance between production speed and quality can be challenging, as increasing the speed may result in reduced quality or increased defects. Ensuring the safety of workers and the environment also poses a major challenge in steel billet production. The production process involves heavy machinery, high temperatures, and potentially hazardous materials, which can jeopardize the health and safety of workers. To address this, it is imperative to implement proper safety protocols, provide training, and ensure compliance with regulatory standards. Furthermore, meeting the constantly growing demand for steel billets presents a challenge for producers. Market demand fluctuates, necessitating the ability to adjust production capacity accordingly. This requires flexibility in production planning and efficient inventory management to avoid overproduction or stock shortages. Lastly, technological advancements and innovations within the steel industry bring both challenges and opportunities. Incorporating new technologies, such as automation, artificial intelligence, and data analytics, can enhance efficiency and productivity. However, integrating these technologies into existing production processes can be complex and often requires substantial investments and expertise. In summary, the primary challenges in steel billet production include maintaining consistent quality, optimizing production processes, ensuring safety, meeting market demand, and adapting to technological advancements. Overcoming these challenges necessitates continuous improvement, innovation, and a proactive approach to remain competitive in the steel industry.
Q: How are steel billets used in the production of steel cables?
Steel billets are an integral component in the production of steel cables. These billets serve as the raw material from which the cables are made. To produce steel cables, the billets undergo a series of processes. Firstly, the steel billets are heated in a furnace to extremely high temperatures, which makes them malleable and easier to work with. This process is known as annealing. The billets are then passed through a series of rollers to shape them into the desired form and size for the cables. Next, the shaped billets are passed through a wire drawing machine where they are pulled through a series of dies to reduce their diameter and increase their length. This results in a wire-like structure known as a wire rod. These wire rods are then further processed through a series of machines to clean and remove any impurities or surface defects. They are then coated with lubricants to reduce friction during the subsequent processes. The wire rods are then passed through a wire stranding machine, where multiple wires are twisted together to form strands. These strands are then combined together, either by twisting or braiding, to form the final steel cables. The cables are once again coated with lubricants to improve their durability and resistance to corrosion. Overall, steel billets play a crucial role in the production of steel cables as they serve as the starting material for the entire process. Through a series of heating, shaping, and drawing processes, the billets are transformed into wire rods, which are then further processed to create the strands and eventually the final steel cables.
Q: What are the key properties and characteristics of steel billets?
Steel billets are semi-finished steel products that are rectangular in shape and typically have a square cross-section. They serve as the starting point for the production of various steel products, including bars, rods, and wire. The key properties and characteristics of steel billets include: 1. Composition: Steel billets are primarily made of iron and carbon, with additional alloying elements added to enhance specific properties. The carbon content typically ranges from 0.2% to 0.5%, depending on the desired strength and hardness. 2. Strength and Hardness: Steel billets offer excellent strength and hardness due to their composition and the heat treatment processes they undergo. This makes them suitable for applications requiring high load-bearing capacity and resistance to wear and tear. 3. Ductility: Despite their strength, steel billets also exhibit good ductility, allowing them to be easily shaped and formed into various products through processes like rolling, extrusion, and forging. This makes them highly versatile and adaptable to different manufacturing methods. 4. Homogeneity: Steel billets have a uniform internal structure, ensuring consistency in their mechanical properties throughout the entire material. This homogeneity is achieved through precise casting and cooling processes, which minimize the presence of defects and impurities. 5. Dimensional Precision: Steel billets are manufactured with specific dimensions and tolerances, ensuring the desired size and shape for downstream processing. This dimensional precision enables efficient and accurate production, minimizing waste and maximizing productivity. 6. Surface Quality: Steel billets have a smooth and clean surface finish, free from any significant imperfections or irregularities. This is crucial for subsequent processing steps, as it ensures proper bonding during welding, machining, or coating operations. 7. Heat Conductivity: Steel billets possess excellent thermal conductivity, allowing them to efficiently transfer heat during various manufacturing processes, such as hot rolling or continuous casting. This property ensures uniform heating and cooling, leading to consistent material properties. 8. Corrosion Resistance: Steel billets are susceptible to corrosion if left unprotected. However, they can be coated or treated with anti-corrosive measures to enhance their resistance to rust and other forms of degradation. Overall, steel billets are characterized by their strength, ductility, dimensional precision, and homogeneity. These properties make them a crucial raw material in the steel industry, enabling the production of high-quality steel products used in a wide range of sectors, including construction, automotive, and infrastructure.
Q: How can steel billets be customized for specific applications?
Steel billets can be customized for specific applications through various processes such as heat treatment, alloying, and shaping. Heat treatment techniques like quenching and tempering can enhance the billet's strength, hardness, and toughness. Alloying elements can be added to improve specific properties like corrosion resistance or high-temperature performance. Additionally, the billets can be shaped through processes like rolling, forging, or extrusion to achieve the desired dimensions and form required for specific applications.
Q: What are the different types of steel used for manufacturing billets?
There are several different types of steel that are commonly used for manufacturing billets, each with its own unique properties and applications. Some of the most common types of steel used for this purpose include: 1. Mild Steel: This is one of the most widely used types of steel for manufacturing billets. It has a low carbon content and is known for its strength and ductility. Mild steel is often used for general purpose applications where high strength is not required. 2. Carbon Steel: This type of steel contains higher levels of carbon compared to mild steel. It offers improved hardness and strength, making it suitable for applications that require greater resistance to wear and tear, such as tools and machinery components. 3. Alloy Steel: Alloy steel is made by adding various alloying elements, such as manganese, nickel, chromium, or molybdenum, to the base iron. This results in a steel with enhanced properties such as increased strength, durability, and corrosion resistance. Alloy steel billets are commonly used in the automotive, aerospace, and construction industries. 4. Stainless Steel: Stainless steel is a steel alloy that contains a minimum of 10.5% chromium, which provides excellent resistance to corrosion and staining. This makes it ideal for applications that require high levels of hygiene, such as food processing equipment and medical devices. 5. Tool Steel: Tool steel is a type of high-carbon steel that is specifically designed to be used in the production of tools, dies, and molds. It is known for its hardness, wear resistance, and ability to retain its shape at high temperatures. 6. High-Speed Steel: High-speed steel is a type of tool steel that is specifically designed to withstand high temperatures without losing its hardness. It is commonly used for cutting tools, such as drills and milling cutters. These are just a few examples of the different types of steel used for manufacturing billets. The choice of steel will depend on the specific requirements of the application, such as strength, durability, corrosion resistance, and temperature resistance.
Q: How are steel billets used in the production of shafts?
Steel billets are an essential component in the production of shafts. A billet is a semi-finished product that serves as the starting point for various manufacturing processes. In the case of shaft production, steel billets are used as the raw material from which the shafts are formed. The process begins by heating the steel billets to a specific temperature, typically in a furnace. This heating process, known as "hot working," is crucial as it makes the steel more malleable and easier to shape. Once the billet reaches the desired temperature, it is then transferred to a forging press or a rolling mill. In the forging process, the heated billet is subjected to high pressure and shaped using specialized dies to achieve the desired shaft dimensions. This method allows for precise control over the shape, size, and surface finish of the shaft. On the other hand, in the rolling process, the billet is passed through a series of rollers that gradually shape it into a cylindrical form. Rolling is often used for shafts that require a constant cross-section along their length. After the initial shaping process, the shafts undergo further steps such as heat treatment, machining, and finishing to meet the specific requirements of their intended application. Heat treatment helps enhance the mechanical properties of the shaft, making it stronger, more durable, and resistant to wear. Machining processes, such as turning, milling, or grinding, are then carried out to achieve precise dimensions, smooth surfaces, and accurate tolerances. Overall, steel billets play a crucial role in the production of shafts as they provide a starting point for the shaping processes necessary to create these critical components. Through careful manipulation and refinement, steel billets transform into high-quality shafts that are used in various industries, including automotive, aerospace, manufacturing, and many others.
Q: How are steel billets used in the production of hydraulic cylinders?
Hydraulic cylinders rely on steel billets as a crucial raw material for their production. These billets, which are cylindrical and made of high-quality steel, serve as the starting point for the manufacturing process. To begin, the steel billets are heated in a furnace. This heating process, known as hot rolling, makes the billets more malleable and easier to work with. Once heated, the billets are then passed through a series of rollers, shaping and elongating them to the desired size and form. After the initial shaping, the billets undergo further processing through various machining operations. These operations include drilling, boring, milling, and grinding, among others. By using these machining processes, the necessary features and dimensions for hydraulic cylinders, such as piston and rod bores, mounting holes, and fluid flow ports, are created. Once the machining operations are complete, the billets are subjected to heat treatment to improve their mechanical properties. The specific heat treatment method, either quenching and tempering or annealing, depends on the hydraulic cylinder's requirements. Heat treatment enhances the steel's strength, hardness, and durability, ensuring that the hydraulic cylinder can withstand the high pressures and forces it will encounter during operation. After shaping, machining, and heat treatment, the steel billets are ready for the final assembly stage. Other components, such as pistons, rods, seals, and valves, are added to complete the hydraulic cylinder. These components are carefully integrated with the billets to ensure proper functionality and reliable performance. In conclusion, steel billets are essential for the production of hydraulic cylinders. They undergo heating, shaping, machining, heat treatment, and assembly to form the core structure of the cylinder. This guarantees that the hydraulic cylinder possesses the necessary strength, durability, and precision required for efficient operation in a variety of industrial and mobile applications.
Q: How do steel billets contribute to the overall durability of a structure?
Steel billets are a crucial component in the construction industry, playing a significant role in enhancing the overall durability of structures. These billets are created by casting molten steel into a solid form, which is then further processed into various shapes and sizes for use in construction projects. One of the main ways in which steel billets contribute to the durability of a structure is through their high strength and load-bearing capacity. Steel is known for its exceptional strength-to-weight ratio, meaning it can withstand heavy loads and stresses without sacrificing its structural integrity. When used in the construction of a building, steel billets provide the necessary strength to support the weight of the entire structure, ensuring it can withstand various environmental and operational factors for a prolonged period. Furthermore, steel billets offer excellent resistance to corrosion, which is a common cause of structural deterioration. Steel is inherently resistant to rust and other forms of corrosion, making it an ideal material for structures that are exposed to moisture, humidity, or harsh weather conditions. This resistance to corrosion ensures that the structure remains intact and structurally sound over time, reducing the need for frequent maintenance and repairs. Another significant contribution of steel billets to the durability of a structure is their ability to withstand extreme temperatures. Steel has a high melting point, allowing it to maintain its structural integrity even under intense heat. This property is particularly crucial in ensuring the safety and longevity of structures in high-temperature environments, such as industrial facilities or buildings near fire-prone areas. Furthermore, steel billets can also enhance the overall resilience of a structure against external forces, such as earthquakes or strong winds. Due to its high elasticity and ductility, steel can absorb and dissipate energy more effectively than other materials, reducing the risk of structural failure during seismic events or extreme weather conditions. In summary, steel billets contribute to the overall durability of a structure in several ways. Their high strength, load-bearing capacity, resistance to corrosion, ability to withstand extreme temperatures, and resilience against external forces make them an ideal material for constructing long-lasting and robust structures. By utilizing steel billets in construction projects, engineers can ensure the durability and safety of structures for years to come.
Q: Can steel billets be used in the production of industrial equipment?
Yes, steel billets can be used in the production of industrial equipment. Steel billets are semi-finished metal products that can be further processed to create various types of industrial equipment such as machinery, tools, automotive parts, construction materials, and more. The high strength, durability, and versatility of steel make it an ideal material for manufacturing industrial equipment. Steel billets can be shaped, machined, and welded to create complex structures and components, providing the necessary strength and stability required for industrial applications. Additionally, steel billets can be heat-treated to enhance their mechanical properties, making them even more suitable for use in heavy-duty industrial equipment.

Send your message to us

This is not what you are looking for? Post Buying Request

Similar products

Hot products


Hot Searches

Related keywords