Continue Casting Steel Billets/Blooms Produced by Blasting Furnace
- Loading Port:
- Tianjin
- Payment Terms:
- TT OR LC
- Min Order Qty:
- 1000 m.t.
- Supply Capability:
- 100000 m.t./month
OKorder Service Pledge
OKorder Financial Service
You Might Also Like
Continue Casting Steel Billets/Blooms Produced by Blasting Furnace
1.Structure of Continue Casting Steel Billets/Blooms Produced by Blasting Furnace
Continue Casting Steel Billets/Blooms Produced by Blasting Furnaceis the raw material of all kinds of steel mill. Billet section of square, round, flat, rectangular and abnormity, etc Several, mainly related to shape of rolled products. Simple rolled section steel, choose cross section of square billet or rectangular billet. rolling The sector products such as flat steel, Angle steel, select the rectangular billet or slab. Had better profiled billet when production beams, channels, and in rolling process Lines and improve the yield. The raw material of round billet is the production of seamless tube.
2.Main Features of Continue Casting Steel Billets/Blooms Produced by Blasting Furnace.
Continue Casting Steel Billets/Blooms Produced by Blasting Furnacesection size should meet the requirements of rolling deformation and finished product quality, but also roll strength and biting condition of restrictions. General steel Billet section height H. And the roll diameter D The ratio of the ( namely H/D) Should be less than or equal to zero 0.5 . Length of steel billet by finishing temperature, Rolling time and the length of the product Or times ruler. When heated too long accident prone to bump the furnace wall of steel, too short, furnace bottom utilization rate is not high, influence the heating furnace production. For the production Choose a variety of steel and steel billet, should consider the affinities of billet, as far as possible in order to improve the productivity of the roughing mill, simplify the stock management of workshop.
There are three shapes of the steel billets: square billet, slab, rectangular billet The Chinese billet, rectangular billet is mainly suitable for rolling hot rolled strip, building reinforced bar, Ordinary wire, high speed wire rod and various small profile. Of the slab are mainly used for rolling plate and hot coil sheet.
3. Continue Casting Steel Billets/Blooms Produced by Blasting Furnace Images
4. Continue Casting Steel Billets/Blooms Produced by Blasting Furnace Specification
Continue Casting Steel Billet by Blasting Furnace rolled steel, after processing can be used for mechanical parts, forging parts, processing all kinds of steel, steel Q345B channel steel, wire rod is the role of the billet. Steel billet is used in the production of semi- finished products, generally cannot be used directly for the society. Steel billets and steel are strictly divided into standard, cannot decide to whether the business enterprise of the final product, and according to unified standards to perform the whole society. Typically, billet and the steel is relatively easy to distinguish, but for some steel billet, and have the same specification and same steel purposes (such as rolling tube billet), whether can be used for other industries, whether through steel processing process, whether through a finished product rolling mill processing to distinguish
Material standard The editor Range of thickness: 150-240 - mm + / - 5 mm width range: 880-1530 - mm + / - 20 mm Length: 3700-10000 - mm + / - 500 - mm Cross-sectional size: 64 * 64; 82 * 82; 98 * 98; 124 * 124; 120 * 150; 152 * 164; 152 * 170 mm Length: 9000 mm Section of tolerance: billet: 1.0 + / - 2.0-1.0 + / - 1.0 mm slab: width: + / - 2.0 mm thickness: + / - 3.0 mm The length tolerance: + / - 200 mm Section diagonal tolerance: 3.5-8.0 MM Billet section size protrusions requirements: < 1242 mm, do not allow; > = 1242 mm, < = 2 mm 1242 mm, < = 3 mm Beheading (shear) extension deformation: < 1242 mm billet: no control; The slab: < = 15 mm Surface tilt: no more than billet section 0.1 Bending: every 1 m length is not more than 10 mm The distortion: length < = 5 m, < = 11. ; The length of the < = 7.5 M, < = 5. Material % 3 sp/PS chemical composition: C Mn Si S P
5.FAQ of Continue Casting Steel Billets/Blooms Produced by Blasting Furnace
We have organized several common questions for our clients,may help you sincerely:
①How about your company?
A world class manufacturer & supplier of castings forging in carbon steel and alloy steel,is one of the large-scale professional investment casting production bases in China,consisting of both casting foundry forging and machining factory. Annually more than 8000 tons Precision casting and forging parts are exported to markets in Europe,America and Japan. OEM casting and forging service available according to customer’s requirements.
②How to guarantee the quality of the products?
We have established the international advanced quality management system,every link from raw material to final product we have strict quality test;We resolutely put an end to unqualified products flowing into the market. At the same time, we will provide necessary follow-up service assurance.
③Could I know the process of the producing?
Sure.Steel billet is produced by the method of through three processes: It is through the steelmaking system of continuous casting equipment, directly by the molten steel pouring into billet; The second is the steelmaking system in the production of steel ingot casting billet through system of steel rolling rolling equipment or processing of steel semi-finished products; Three is the steelmaking system production of steel ingot by forging the semi-finished product processing equipment.How to distinguish between the size of the inclusions? The size of the inclusion size, it is according to the slab is processed into finished products, whether affect the processing performance and can be divided into two micro inclusions and large inclusions.It is generally believed that inclusion particle size less than 50 microns, called micro inclusions size greater than 50 microns large inclusions.The inclusions in the continuous casting billet come from? Found in the continuous casting billet of inclusion complex, forms.Judging from the inclusion of ingredients, can be roughly know the source of inclusions. (1) the weak deoxidizing elements contained in the inclusion is more, and SiO2 + MnO content greater than 60%, the size is more than 50 microns, which can determine the inclusions are caused by air and molten steel secondary oxidation; (2) inclusion composition and refractory materials, with special shape, size is larger, can determine for refractory erosion;(3) inclusion contains such elements as potassium, sodium, is due to mould protection slag in molten steel.
- Q:How are steel billets recycled at the end of their lifespan?
- At the end of their lifespan, steel billets are recycled through a process known as steel scrap recycling. This involves collecting the steel billets and segregating them from other materials. The billets are then cleaned to remove any contaminants and sorted based on their composition and quality. The next step in the recycling process is to melt the steel billets in a furnace. The high temperatures in the furnace cause the steel to melt, separating it from any impurities. Various techniques, such as electric arc furnaces or basic oxygen furnaces, can be used for this purpose. Once the steel has melted, it is then cast into new billets or other steel products such as bars, rods, or sheets, depending on the desired end product. The molten steel is poured into molds to form the desired shape and then cooled down to solidify. After solidification, the newly formed steel billets are further processed to remove any surface imperfections and give them the desired dimensions. This can involve processes like hot rolling, cold rolling, or heat treatment to enhance the mechanical properties of the steel. The recycled steel billets can then be used in various industries, including construction, automotive, and manufacturing, to produce a wide range of products. By recycling steel billets, the lifespan of the material is extended, reducing the need for virgin steel production and conserving valuable natural resources. Additionally, recycling steel billets helps to reduce energy consumption and greenhouse gas emissions associated with the production of new steel. Overall, the recycling process for steel billets at the end of their lifespan is a crucial component of the circular economy, promoting sustainability and resource efficiency in the steel industry.
- Q:What is the typical hardness of a steel billet?
- The hardness of a steel billet can vary depending on different factors, including the type of steel, the manufacturing process, and the intended use. Steel billets are typically made to have a certain level of hardness to ensure they are suitable for further processing and applications. To measure hardness in steel, the Rockwell hardness scale is commonly used. This scale assigns a numerical value based on how deeply an indenter penetrates the material. On the Rockwell C scale (HRC), steel billets usually have a hardness ranging from 20 to 70. Higher values indicate greater hardness. However, it is important to consider that the desired hardness can change depending on the intended use of the billet. For instance, if the billet will be used in structural applications or as a raw material for further processing, it may have a lower hardness to make shaping and forming easier. On the other hand, if the billet will be used in applications that require high strength and wear resistance, such as tool or machinery component production, it may have a higher hardness. Ultimately, the typical hardness of a steel billet will depend on the specific requirements and specifications of its intended application. To determine the appropriate hardness range for a particular steel billet, it is crucial to consult relevant standards or technical specifications.
- Q:How are steel billets used in the production of automotive frames?
- Steel billets are used in the production of automotive frames as a primary raw material. Billets are essentially long, rectangular-shaped pieces of steel that are heated and then formed into specific shapes through various manufacturing processes. In the case of automotive frames, these billets are typically heated and then passed through a series of dies and rollers to form the desired shape and dimensions. Once the billets are formed into the appropriate shape, they are further processed through cutting, bending, and welding techniques to create the intricate and sturdy structure of an automotive frame. The use of steel billets in the production of automotive frames is preferred due to the high strength and durability properties of steel, which are crucial for ensuring the safety and structural integrity of the vehicles. Moreover, steel billets offer excellent formability and machinability, allowing manufacturers to create complex frame designs that meet the specific requirements of different vehicle models. Additionally, steel is a cost-effective material, making it a popular choice for mass production in the automotive industry. Overall, steel billets play a vital role in the production of automotive frames by providing a strong and reliable foundation for the vehicle's structure. The use of these raw materials, along with advanced manufacturing techniques, ensures that automotive frames are able to withstand various forces and impacts, ultimately contributing to the overall safety and performance of the vehicles.
- Q:What is the role of steel billets in the manufacturing of hydraulic cylinders?
- Steel billets play a crucial role in the manufacturing of hydraulic cylinders as they are the raw material used to create the cylinder body. The billets are heated and then shaped into the desired cylindrical form through processes like hot rolling or forging. This allows for the production of strong and durable cylinders that can withstand high pressure and various operating conditions.
- Q:How are steel billets cut to size?
- Steel billets are typically cut to size using a variety of methods, depending on the specific requirements and the equipment available. One common method is by using saws or shears, which are capable of cutting through the steel with precision and accuracy. These tools can be operated manually or by using automated machinery. Another method is flame cutting, which involves using a high-temperature flame to melt and sever the steel. This technique is commonly used for thicker billets or when more intricate shapes are required. Similarly, plasma cutting is also a popular method for cutting steel billets. It utilizes a high-velocity jet of ionized gas, which is capable of melting and cutting through the steel. This method is often used when a high level of precision is required, as it offers smoother edges and a more precise cut. Additionally, water jet cutting is another option for cutting steel billets. This process involves using a high-pressure jet of water mixed with an abrasive material to cut through the steel. Water jet cutting is particularly suitable for materials that are sensitive to heat or for achieving intricate shapes. In some cases, steel billets may be cut using laser cutting technology. This method involves using a laser beam to heat and melt the steel, allowing for precise and efficient cutting. Laser cutting is often preferred for its ability to cut through various thicknesses and complex shapes. Ultimately, the choice of cutting method for steel billets depends on factors such as the desired precision, the thickness of the billet, the complexity of the shape, and the available equipment.
- Q:What are the environmental impacts of manufacturing steel billets?
- The manufacturing of steel billets has significant environmental impacts due to the extraction and processing of raw materials, energy consumption, and waste generation. 1. Raw material extraction: The primary raw materials used in steel billet production are iron ore, coal, and limestone. Extracting these resources often involves mining, which can lead to deforestation, habitat destruction, soil erosion, and water pollution. Additionally, the extraction of iron ore requires large amounts of water, which can strain local water supplies. 2. Energy consumption: Steel billet production requires high temperatures, typically achieved through the combustion of fossil fuels such as coal and natural gas. This process is energy-intensive and contributes to greenhouse gas emissions, including carbon dioxide (CO2) and nitrogen oxides (NOx), which are major contributors to climate change and air pollution. 3. Air pollution: The combustion of fossil fuels in steel production also releases particulate matter (PM), sulfur dioxide (SO2), and other pollutants into the air. These emissions can have detrimental effects on human health, causing respiratory problems and contributing to the formation of smog. 4. Water pollution: Steel manufacturing generates wastewater containing various chemicals and heavy metals. If not properly managed, these pollutants can contaminate water bodies, harming aquatic ecosystems and posing risks to human health. Additionally, the cooling of steel production equipment often requires large amounts of water, leading to water scarcity in some areas. 5. Waste generation: Steel production generates significant amounts of waste, including slag, dust, and sludge. These by-products can contain toxic substances and require careful handling and disposal to prevent soil and water contamination. To mitigate these environmental impacts, various measures can be implemented. These include adopting cleaner production technologies, improving energy efficiency, promoting recycling and reuse of materials, implementing effective waste management practices, and investing in renewable energy sources. Additionally, companies can work towards reducing their overall carbon footprint by implementing carbon capture and storage technologies or transitioning to low-carbon energy sources such as electric arc furnaces powered by renewable energy. Furthermore, government regulations and international agreements can play a crucial role in enforcing environmental standards and promoting sustainable practices in the steel manufacturing industry.
- Q:What are the different methods of corrosion protection for steel billets?
- There are various methods available for corrosion protection of steel billets. Some of the common methods include: 1. Coating: Applying a protective coating on the surface of steel billets is one of the most effective methods of corrosion protection. This can be achieved through processes such as hot-dip galvanizing, painting, or applying a protective film. The coating acts as a barrier between the steel surface and corrosive elements in the environment, preventing direct contact and reducing the likelihood of corrosion. 2. Cathodic Protection: This method involves creating an electrochemical reaction to protect the steel billets from corrosion. Cathodic protection can be achieved by either using sacrificial anodes or by applying an impressed current. Sacrificial anodes, typically made of zinc or magnesium, are connected to the steel billets, and they corrode sacrificially instead of the steel, thus protecting it. Impressed current systems use an external power source to provide the necessary current to protect the steel. 3. VCI (Volatile Corrosion Inhibitors): VCI is a method that involves using chemicals that release vapors to create a protective layer on the steel surface. These chemicals inhibit the corrosion process by neutralizing the corrosive agents or forming a protective film on the steel surface. VCI can be applied through various methods, such as coating, wrapping, or inserting VCI paper or packets into the packaging of steel billets. 4. Alloying: Introducing alloying elements into the composition of steel billets can significantly improve their corrosion resistance. For example, adding chromium or nickel can enhance the stainless properties of steel, making it more resistant to corrosion. Alloying can be done during the initial production of steel billets or through post-treatment processes. 5. Environmental Control: Controlling the environment in which steel billets are stored or used is also crucial in preventing corrosion. This includes measures such as maintaining proper humidity levels, avoiding exposure to corrosive chemicals or gases, and minimizing contact with water or moisture. By controlling the environment, the likelihood of corrosion can be reduced, thereby protecting the steel billets. It is important to note that the choice of corrosion protection method depends on various factors, including the anticipated level of exposure to corrosive elements, the intended use of the steel billets, and cost considerations. Therefore, it is advisable to consult with corrosion experts or engineers to select the most suitable method for a particular application.
- Q:What are the main factors affecting the weldability of steel billets?
- There are several main factors that affect the weldability of steel billets. Firstly, the composition of the steel billet plays a significant role. The presence of certain elements, such as carbon, sulfur, phosphorus, and nitrogen, can have a detrimental effect on weldability. Higher carbon content, for example, can lead to the formation of brittle regions in the weld zone. Similarly, elements like sulfur and phosphorus can cause porosity and other defects in the weld. Secondly, the heat treatment history of the steel billet is another important factor. Processes like annealing, quenching, and tempering can alter the microstructure of the steel, affecting its mechanical properties and weldability. For instance, a steel billet that has been excessively hardened may experience cracking during the welding process. Thirdly, the presence of impurities and contaminants in the steel billet can adversely affect weldability. These impurities can lead to the formation of inclusions or other defects in the weld, reducing its strength and integrity. It is crucial to ensure that the steel billet is clean and free from contaminants before welding. The size and shape of the steel billet also impact weldability. Thicker billets, for example, require higher heat input during welding, which can lead to increased residual stresses and distortion. Similarly, complex geometries or irregular shapes may make it challenging to achieve proper joint penetration and fusion during welding. Lastly, the welding process itself can influence the weldability of steel billets. Factors such as welding technique, heat input, welding speed, and the use of filler materials can all affect the quality of the weld. It is essential to select the appropriate welding process and parameters to ensure a sound and defect-free weld. Overall, the main factors affecting the weldability of steel billets include composition, heat treatment history, impurities, size and shape, and the welding process. Considering and managing these factors is crucial to achieve high-quality welds and ensure the integrity and performance of steel structures.
- Q:What is the role of steel billets in the manufacturing of machinery?
- Steel billets play a crucial role in the manufacturing of machinery as they serve as the raw material for creating various machine components. These billets are heated, shaped, and then further processed to produce different parts such as gears, shafts, and structural frames. The high strength and durability of steel make it an ideal material for machinery, ensuring the final products are capable of withstanding heavy loads and harsh conditions.
- Q:How do steel billets contribute to the manufacturing of kitchen appliances?
- Steel billets are an essential component in the manufacturing of kitchen appliances. These billets, which are semi-finished steel products, are typically in the form of a rectangular or square shape and are produced through a process called continuous casting. The first way steel billets contribute to the manufacturing of kitchen appliances is by serving as the primary raw material for the production of various appliance components. For example, kitchen appliances such as stoves, ovens, refrigerators, and dishwashers require a sturdy and durable structure, and steel billets provide the necessary strength and resilience. The billets are processed further through various techniques like hot rolling, forging, or extrusion to form specific appliance parts such as frames, doors, panels, and handles. Secondly, steel billets play a crucial role in ensuring the longevity and reliability of kitchen appliances. Steel, known for its high tensile strength and resistance to corrosion, allows manufacturers to create appliances that can withstand the rigors of daily use and last for a long time. By using steel billets as the base material, kitchen appliances can withstand high temperatures, heavy loads, and harsh environments without compromising their structural integrity. Furthermore, steel billets contribute to the aesthetics of kitchen appliances. The smooth and polished surface of steel provides an attractive finish and modern look to appliances, making them visually appealing to consumers. Steel can also be easily manipulated to achieve different shapes and designs, allowing manufacturers to create sleek and stylish appliances that complement the overall kitchen decor. In addition to these factors, steel billets have excellent heat conductivity properties, which is vital for kitchen appliances like stoves and ovens. The even distribution of heat throughout the appliance ensures efficient cooking and baking, ensuring that food is cooked thoroughly and evenly. Overall, steel billets are integral to the manufacturing of kitchen appliances due to their strength, durability, aesthetics, and heat conductivity properties. Without these billets, it would be challenging to produce high-quality, reliable, and visually appealing kitchen appliances that meet the demands of consumers.
1. Manufacturer Overview |
|
---|---|
Location | |
Year Established | |
Annual Output Value | |
Main Markets | |
Company Certifications |
2. Manufacturer Certificates |
|
---|---|
a) Certification Name | |
Range | |
Reference | |
Validity Period |
3. Manufacturer Capability |
|
---|---|
a)Trade Capacity | |
Nearest Port | |
Export Percentage | |
No.of Employees in Trade Department | |
Language Spoken: | |
b)Factory Information | |
Factory Size: | |
No. of Production Lines | |
Contract Manufacturing | |
Product Price Range |
Send your message to us
Continue Casting Steel Billets/Blooms Produced by Blasting Furnace
- Loading Port:
- Tianjin
- Payment Terms:
- TT OR LC
- Min Order Qty:
- 1000 m.t.
- Supply Capability:
- 100000 m.t./month
OKorder Service Pledge
OKorder Financial Service
Similar products
Hot products
Hot Searches
Related keywords