Solar Silicon Wafer for Sale - High Quality A Grade Polycrystalline 5V 16.8% Solar Cell
- Loading Port:
- Shanghai
- Payment Terms:
- TT OR LC
- Min Order Qty:
- 1000 pc
- Supply Capability:
- 100000 pc/month
OKorder Service Pledge
OKorder Financial Service
You Might Also Like
Specifications
hot sale solar cell
1.16.8%~18.25% high efficiency
2.100% checked quality
3.ISO9001/ISO14001/TUV/CE/UL
4.stable performance
We can offer you the best quality products and services, don't miss !
POLY6'(156*156)
Polycrystalline Silicon Solar cell
Physical Characteristics
Dimension: 156mm×156mm±0.5mm
Diagonal: 220mm±0.5mm
Thickness(Si): 200±20 μm
Front(-) Back(+)
Blue anti-reflecting coating (silicon nitride); Aluminum back surface field;
1.5mm wide bus bars; 2.0mm wide soldering pads;
Distance between bus bars: 51mm . Distance between bus bars :51mm .
Electrical Characteristics
Efficiency(%) | 18.00 | 17.80 | 17.60 | 17.40 | 17.20 | 16.80 | 16.60 | 16.40 | 16.20 | 16.00 | 15.80 | 15.60 |
Pmpp(W) | 4.33 | 4.29 | 4.24 | 4.19 | 4.14 | 4.09 | 4.04 | 3.99 | 3.94 | 3.90 | 3.86 | 3.82 |
Umpp(V) | 0.530 | 0.527 | 0.524 | 0.521 | 0.518 | 0.516 | 0.514 | 0.511 | 0.509 | 0.506 | 0.503 | 0.501 |
Impp(A) | 8.159 | 8.126 | 8.081 | 8.035 | 7.990 | 7.938 | 7.876 | 7.813 | 7.754 | 7.698 | 7.642 | 7.586 |
Uoc(V) | 0.633 | 0.631 | 0.628 | 0.625 | 0.623 | 0.620 | 0.618 | 0.617 | 0.615 | 0.613 | 0.611 | 0.609 |
Isc(A) | 8.709 | 8.677 | 8.629 | 8.578 | 8.531 | 8.478 | 8.419 | 8.356 | 8.289 | 8.220 | 8.151 | 8.083 |
MONO5'(125*125mm)165
Monocrystalline silicon solar cell
Physical Characteristics
Dimension: 125mm×125mm±0.5mm
Diagonal: 165mm±0.5mm
Thickness(Si): 200±20 μm
Front(-) Back(+)
Blue anti-reflecting coating(silicon nitride); Aluminum back surface field;
1.6mmwide bus bars; 2.5mm wide soldering pads;
Distance between bus bars: 61mm . Distance between bus bars :61mm .
Electrical Characteristics
Efficiency(%) | 19.40 | 19.20 | 19.00 | 18.80 | 18.60 | 18.40 | 18.20 | 18.00 | 17.80 | 17.60 | 17.40 | 17.20 |
Pmpp(W) | 2.97 | 2.94 | 2.91 | 2.88 | 2.85 | 2.82 | 2.79 | 2.76 | 2.73 | 2.70 | 2.67 | 2.62 |
Umpp(V) | 0.537 | 0.535 | 0.533 | 0.531 | 0.527 | 0.524 | 0.521 | 0.518 | 0.516 | 0.515 | 0.513 | 0.509 |
Impp(A) | 5.531 | 5.495 | 5.460 | 5.424 | 5.408 | 5.382 | 5.355 | 5.328 | 5.291 | 5.243 | 5.195 | 4.147 |
Uoc(V) | 0.637 | 0.637 | 0.636 | 0.635 | 0.633 | 0.630 | 0.629 | 0.629 | 0.628 | 0.626 | 0.626 | 0.625 |
Isc(A) | 5.888 | 5.876 | 5.862 | 5.848 | 5.839 | 5.826 | 5.809 | 5.791 | 5.779 | 5.756 | 5.293 | 5.144 |
FAQ:
Q:How can i get some sample?
A:Yes , if you want order ,sample is not a problem.
Q:How about your solar panel efficency?
A: Our product efficency around 17.25%~18.25%.
Q:What’s the certificate you have got?
A: we have overall product certificate of ISO9001/ISO14001/CE/TUV/UL
- Q: Can solar silicon wafers be used in smart grid applications?
- Yes, solar silicon wafers can be used in smart grid applications. They can be used to convert sunlight into electricity, which can then be integrated into the smart grid to enhance renewable energy generation and distribution.
- Q: Can solar silicon wafers be used in remote or isolated areas?
- Yes, solar silicon wafers can be used in remote or isolated areas. Solar panels made from silicon wafers are a reliable and efficient source of clean energy, making them suitable for powering off-grid locations where access to conventional electricity may be limited or non-existent. The panels can harness sunlight and convert it into electricity, providing a sustainable power solution for remote areas.
- Q: What are the different materials used for backsheets in solar silicon wafers?
- The different materials used for backsheets in solar silicon wafers include polyester (PET), polyvinyl fluoride (PVF), and polyvinylidene fluoride (PVDF). These materials are chosen for their durability, weather resistance, and ability to protect the solar cells from moisture, UV radiation, and other environmental factors.
- Q: What is the expected degradation rate of solar silicon wafers over time?
- The expected degradation rate of solar silicon wafers over time varies depending on several factors including the quality of the materials used, manufacturing processes, environmental conditions, and maintenance practices. However, on average, solar silicon wafers experience a degradation rate of around 0.5-1% per year.
- Q: Are solar silicon wafers recyclable?
- Yes, solar silicon wafers are recyclable.
- Q: What is the difference between monocrystalline and polycrystalline silicon wafers?
- The main difference between monocrystalline and polycrystalline silicon wafers lies in their crystal structure. Monocrystalline wafers are made from a single crystal of silicon, resulting in a uniform and consistent structure. On the other hand, polycrystalline wafers are composed of multiple crystals, which give them a less uniform appearance. Monocrystalline wafers tend to have higher efficiency and better performance in converting sunlight into electricity, while polycrystalline wafers are generally more affordable to produce.
- Q: What are the main manufacturers of solar silicon wafers?
- Some of the main manufacturers of solar silicon wafers include companies like REC Silicon, Wacker Chemie, Hemlock Semiconductor Corporation, and Shin-Etsu Chemical Co., Ltd.
- Q: How are solar silicon wafers protected against corrosion?
- Solar silicon wafers are protected against corrosion through the use of passivation techniques. These techniques involve applying a thin layer of protective material, such as silicon nitride or silicon oxide, to the surface of the wafers. This protective layer acts as a barrier, preventing the silicon underneath from coming into contact with moisture or other corrosive elements in the environment. Additionally, the wafers are often encapsulated within a protective module, such as a glass or polymer sheet, which further shields them from corrosion.
- Q: Can solar silicon wafers be recycled?
- Yes, solar silicon wafers can be recycled. The recycling process involves the extraction and purification of silicon from used wafers, which can then be used to manufacture new solar panels. Recycling solar silicon wafers helps reduce waste and promotes a more sustainable approach to solar energy production.
- Q: What is the effect of surface passivation on solar silicon wafers?
- Surface passivation on solar silicon wafers has a significant positive effect on their efficiency and overall performance. It helps minimize surface recombination of electrons and holes, reducing energy losses and improving charge carrier lifetimes. This leads to enhanced solar cell efficiency, increased power output, and improved long-term stability. Surface passivation also helps reduce the impact of impurities and defects on the wafer surface, resulting in better light absorption and conversion of sunlight into electricity.
Send your message to us
Solar Silicon Wafer for Sale - High Quality A Grade Polycrystalline 5V 16.8% Solar Cell
- Loading Port:
- Shanghai
- Payment Terms:
- TT OR LC
- Min Order Qty:
- 1000 pc
- Supply Capability:
- 100000 pc/month
OKorder Service Pledge
OKorder Financial Service
Similar products
Hot products
Hot Searches
Related keywords