• Sen Monolithic Refractories for Iron and Steel Industry Melting Furnace Refractory Material System 1
  • Sen Monolithic Refractories for Iron and Steel Industry Melting Furnace Refractory Material System 2
Sen Monolithic Refractories for Iron and Steel Industry Melting Furnace Refractory Material

Sen Monolithic Refractories for Iron and Steel Industry Melting Furnace Refractory Material

Ref Price:
get latest price
Loading Port:
Shanghai
Payment Terms:
TT OR LC
Min Order Qty:
10 set
Supply Capability:
50000 set/month

Add to My Favorites

Follow us:


OKorder Service Pledge

Quality Product, Order Online Tracking, Timely Delivery

OKorder Financial Service

Credit Rating, Credit Services, Credit Purchasing

Specifications

sen 
Long life 
Reliable 
ISO9001 
High thermal shock resistance.

1.New type Composite subemeged nozzle

Advantage

long life,10hours

high thermal shock resistance

and reliable flow control

Applicable to the C.C. of the billet, slab, round and bloom for the converter, and EAF,

pouring for more than 400 min .

 

Application  

Applicable to the C.C. of the billet, slab, round and bloom for the converter, and EAF, pouring for more than 400 min,and compositions and specifications can be adjusted according to the specific requirement of the customer.

 

Specifications

No.

SK6-7

SK6-8

SK6-9

SK6-10

SK6-11

SK6-12

Name

Submerge entry nozzle(SEN)

Body

Slag-band

Body

Slag-band

Body

Slag-band

Al2O3   %

≥45

≥45

≥50

C+SiC %

≥30

≥13

≥30

≥13

C≥26

≥13

ZrO2   %

≥4

≥75

≥4

≥75

≥3

≥75

B.D.g/cm3

≥2.3

≥3.5

≥2.3

≥3.5

≥2.25

≥3.5

A.P.       %

≤19

≤19

≤19

≤19

≤18

≤19

CCS   MPa

≥20

≥20

≥20

≥20

≥20

≥20

H.M.O.R   MPa

 

≥6

 

≥6

 

≥6

 

≥6

 

≥6

 

≥6

Thermal shock resistance times

 

 

≥5

 

 

≥5

 

 

≥5

 

 

≥5

 

 

≥5

 

 

≥5

Details of Al2O3-ZrO2-C  Al2O3 anti-clogging SEN

Series of Al2O3-ZrO2-C material in the body can be applied to different steel grades. The latest new type of low silica material has more higher thermal stability, erosion resistance compared with traditional materials.


Multi-types for Al2O3 anti-clogging.
1.Inner lining with argon insert
2.Traditional Al2O3 anti-clogging inner lining
3.Low silica&low carbon inner lining

Series of compound materials for slag line.

Q: What are the common manufacturing processes used for monolithic refractories?
The common manufacturing processes used for monolithic refractories include: 1. Mixing: The first step in the manufacturing process is the proper mixing of the raw materials. This involves carefully measuring and combining the different ingredients to ensure a homogeneous mixture. 2. Wetting: Once the ingredients are mixed, water or a liquid binder is added to wet the mixture. This helps in improving the workability and plasticity of the material, making it easier to shape and mold. 3. Forming: The wet mixture is then shaped into the desired form using various techniques such as casting, gunning, ramming, or extrusion. Casting involves pouring the wet mixture into a mold and allowing it to solidify, while gunning uses a spray gun to apply the material onto a surface. Ramming involves compacting the wet mixture into a mold using a ramming tool, and extrusion involves forcing the wet mixture through a die to create specific shapes. 4. Drying: After forming, the shaped monolithic refractory is dried to remove any excess moisture. This is typically done in a controlled environment with specific temperature and humidity conditions to prevent cracking or warping. 5. Firing: Once dried, the monolithic refractory is fired at high temperatures to achieve its desired properties. This process, known as sintering, helps in bonding the particles together and increasing the strength and stability of the material. 6. Finishing: After firing, the monolithic refractory may undergo additional finishing processes such as grinding, polishing, or coating to improve its surface quality and enhance its performance. These common manufacturing processes ensure the production of high-quality monolithic refractories with consistent properties and performance characteristics.
Q: How are monolithic refractories used in the repair and maintenance of ladle and tundish covers?
Due to their excellent thermal resistance and durability, monolithic refractories are commonly utilized for repairing and maintaining ladle and tundish covers. These covers play a crucial role in the containment of molten metal and the prevention of heat loss during the steelmaking process. When exposed to high temperatures and thermal cycling, ladle and tundish covers can undergo wear and tear, resulting in cracks, spalling, or even complete failure. This is where monolithic refractories come into play. Monolithic refractories are refractory materials that are not shaped and can be easily molded and applied to damaged areas of ladle and tundish covers. They can be cast, gunned, or sprayed onto the surface, enabling quick and efficient repairs. Typically, these refractories consist of a matrix material, such as alumina, silica, or magnesia, along with various additives and bonding agents. The specific composition depends on the application requirements and severity of operating conditions. The repair process begins by identifying the damaged areas of the ladle or tundish cover. Any loose or damaged refractory material is removed, and the surface is prepared for the application of the monolithic refractory. This may involve cleaning, roughening, or even preheating the surface, depending on the specific requirements. The monolithic refractory is then mixed with water or a suitable binder to achieve a workable consistency. It is then applied to the damaged areas using the appropriate method, such as casting or spraying. After application, the refractory material is allowed to dry and cure, typically through controlled heating. Once cured, the monolithic refractory forms a robust and durable lining that can withstand the high temperatures, thermal cycling, and chemical reactions occurring during ladle and tundish operation. It provides excellent thermal insulation, minimizing heat loss and reducing energy consumption. Moreover, monolithic refractories exhibit superior resistance to slag, metal penetration, and erosion, ensuring extended service life for ladle and tundish covers. They also possess good thermal shock resistance, enabling them to endure rapid temperature changes without cracking or spalling. In conclusion, monolithic refractories are indispensable for repairing and maintaining ladle and tundish covers due to their thermal resistance, durability, and ease of application. Their ability to withstand high temperatures, thermal cycling, and chemical reactions ensures the integrity and efficiency of ladle and tundish operations in the steelmaking industry.
Q: How do monolithic refractories contribute to the overall safety of iron and steel operations?
The overall safety of iron and steel operations is greatly ensured by the crucial role played by monolithic refractories, which provide various important benefits. Firstly, these refractories are renowned for their exceptional thermal insulation properties, enabling them to effectively withstand extreme temperatures and prevent heat loss. This is particularly crucial in iron and steel operations where high temperatures are involved in processes like melting, casting, and heat treatment. By minimizing heat loss, monolithic refractories help maintain a stable temperature environment, thereby reducing accident risks and ensuring personnel safety. Secondly, monolithic refractories offer outstanding resistance to chemical attacks. In iron and steel operations, the presence of different chemicals and gases can corrode and deteriorate the linings of furnaces, ladles, and other equipment. By serving as a protective barrier, monolithic refractories prevent the penetration of these corrosive substances, prolonging the equipment's lifespan and minimizing the chances of failures or leaks that could pose safety hazards. Moreover, monolithic refractories are known for their structural integrity and high mechanical strength. In iron and steel operations, heavy loads and stresses are common, especially during the handling and movement of molten metal and raw materials. Monolithic refractories can withstand these stresses without cracking or collapsing, ensuring the equipment's structural stability and minimizing accidents or equipment failures. Additionally, monolithic refractories exhibit excellent thermal shock resistance. In iron and steel operations, sudden temperature changes can occur due to the introduction of cold materials or liquids into hot equipment. This thermal shock can cause cracking and spalling of the refractory lining, compromising the operation's safety and efficiency. With their ability to withstand thermal shock, monolithic refractories help minimize the risk of unexpected failures and maintain the operation's overall safety. In conclusion, monolithic refractories significantly contribute to the overall safety of iron and steel operations through their high thermal insulation, chemical resistance, structural integrity, and thermal shock resistance. By ensuring a stable temperature environment, protecting against chemical attacks, withstanding heavy loads, and resisting thermal shock, monolithic refractories help prevent accidents, equipment failures, and potential hazards, creating a safer working environment for personnel in the iron and steel industry.
Q: What are the different techniques for installing monolithic refractories?
There are several techniques for installing monolithic refractories, each with its own advantages and suitability for different applications. Some of the common techniques include: 1. Casting: In this technique, the refractory material is mixed with water or a binder to form a slurry. The slurry is then poured into molds or directly onto the prepared surface. The material is allowed to set and harden, forming a solid monolithic structure. 2. Gunning: Gunning involves spraying the refractory material onto the surface using a gunning machine. The material is mixed with water or a binder to form a wet mix, which is then propelled onto the surface at high velocity. This technique is commonly used for repairing or lining larger areas and can be done onsite. 3. Ramming: Ramming involves compacting the refractory material into place using a pneumatic or manual ramming tool. The material is typically preheated to reduce moisture content and increase workability. This technique is often used for lining smaller areas or for filling gaps between bricks or precast shapes. 4. Shotcreting: Shotcreting is a technique similar to gunning, but it involves using a dry mix of refractory material. The dry mix is combined with water or a binder just before it is sprayed onto the surface using a high-pressure nozzle. Shotcreting is commonly used for lining larger areas or for creating complex shapes. 5. Troweling: Troweling involves applying the refractory material onto the surface using a trowel or a similar tool. The material is typically a wet mix and is spread and smoothed manually. This technique is often used for patching or repairing small areas or for finishing touches. 6. Vibrating: Vibrating involves using a vibrating tool or a vibrator to compact the refractory material and remove air pockets. This technique is commonly used for improving the density and strength of the monolithic refractory after it has been installed using other techniques. It is important to note that the selection of the technique depends on various factors such as the type of refractory material, the size and shape of the area to be lined, and the specific requirements of the application. Additionally, proper preparation of the surface and adherence to installation guidelines are crucial for ensuring the effectiveness and longevity of the monolithic refractory.
Q: How do monolithic refractories improve the efficiency of ladle and tundish preheating furnaces?
Monolithic refractories play a crucial role in improving the efficiency of ladle and tundish preheating furnaces. These refractories are made from a single material and are designed to be easily installed, repaired, and replaced, making them highly versatile and cost-effective. One of the main ways monolithic refractories contribute to the efficiency of these furnaces is through their excellent thermal insulation properties. These refractories have low thermal conductivity, which means they can effectively retain heat and prevent it from escaping the furnace. This insulation capability minimizes heat loss and ensures that the preheating process is carried out efficiently, reducing energy consumption and costs. Furthermore, monolithic refractories have high thermal shock resistance, which is crucial in ladle and tundish preheating furnaces. These furnaces are subjected to rapid temperature changes when molten metal is poured into them, and this can cause conventional refractories to crack or fail. However, monolithic refractories are designed to withstand thermal shock, ensuring that they remain intact and maintain their insulating properties even under extreme conditions. This durability enhances the overall efficiency of the preheating process by reducing downtime and maintenance requirements. Moreover, monolithic refractories provide a smooth and uniform lining surface, which helps to improve heat transfer within the furnace. The absence of joints or seams reduces the risk of heat leakage and ensures that heat is evenly distributed throughout the lining. This promotes uniform heating of the ladle or tundish, allowing for more efficient preheating and better control of the temperature. In summary, the use of monolithic refractories in ladle and tundish preheating furnaces results in improved efficiency due to their excellent thermal insulation properties, high thermal shock resistance, and ability to provide a smooth and uniform lining. These refractories help to minimize heat loss, reduce energy consumption, and enhance the overall performance of the preheating process.
Q: What are the key properties of gunning mixes used for monolithic refractory repairs?
The key properties of gunning mixes used for monolithic refractory repairs are high strength, good adhesion, excellent workability, and high resistance to thermal shock and abrasion. These properties ensure that the gunning mix can withstand the intense heat and harsh conditions of refractory applications, providing a durable and long-lasting repair solution.
Q: What are monolithic refractories?
Monolithic refractories are a type of heat-resistant materials used to line high-temperature industrial equipment such as furnaces, kilns, and reactors. Unlike traditional refractories, which are made of pre-formed bricks or shapes, monolithic refractories are a single, solid piece that can be easily shaped and installed. They are composed of various aggregates, binders, and additives, providing excellent thermal insulation and resistance to extreme temperatures, chemical attacks, and mechanical stress. Monolithic refractories offer flexibility, cost-effectiveness, and improved installation efficiency compared to traditional brick refractories.
Q: How are monolithic refractories different from traditional refractory bricks?
Monolithic refractories refer to a type of refractory material that is composed of a single, homogeneous structure, as opposed to traditional refractory bricks which are made by binding individual bricks together. This fundamental difference in structure leads to several distinctions between monolithic refractories and traditional refractory bricks. Firstly, monolithic refractories offer greater flexibility and versatility in terms of shape and installation. Since they are not bound by individual bricks, monolithic refractories can be easily molded and shaped to fit specific applications and complex geometries. This makes them ideal for lining various types of furnaces, kilns, and other high-temperature equipment. Secondly, monolithic refractories typically have superior thermal shock resistance compared to traditional refractory bricks. Their uniform structure allows for better distribution of heat, minimizing the risk of thermal stress and cracking. This characteristic makes monolithic refractories particularly suitable for applications with rapid temperature fluctuations or severe thermal cycling. Additionally, monolithic refractories often exhibit better overall performance in terms of strength, mechanical properties, and resistance to chemical attack. The absence of joints and seams in monolithic refractories eliminates potential weak points, resulting in a more durable and reliable lining. Moreover, the homogeneous structure of monolithic refractories provides better resistance to corrosive agents, ensuring prolonged service life in harsh environments. Lastly, monolithic refractories offer advantages in terms of installation and maintenance. Their monolithic nature simplifies the installation process, reducing labor and time requirements. Additionally, repairs and maintenance of monolithic refractories can be carried out more easily and cost-effectively compared to traditional refractory bricks, which may require the replacement of entire sections or bricks. In summary, monolithic refractories differ from traditional refractory bricks in their structure, flexibility, thermal shock resistance, performance, and installation characteristics. These differences make monolithic refractories a preferred choice in many high-temperature applications, offering improved efficiency, durability, and ease of use.
Q: How do monolithic refractories contribute to the reduction of emissions in iron and steel plants?
Monolithic refractories play a crucial role in reducing emissions in iron and steel plants by providing various benefits and solutions to the environmental challenges faced by these industries. Firstly, monolithic refractories are used to line the high-temperature zones of furnaces, such as blast furnaces and electric arc furnaces, that are integral to the iron and steel production processes. These refractories have excellent thermal insulation properties, which help to minimize heat loss and improve energy efficiency. By reducing heat loss, less fuel is required to maintain the desired temperature, resulting in lower energy consumption and subsequently lower emissions. Furthermore, monolithic refractories also contribute to emissions reduction by enhancing the combustion process. They are designed to resist thermal shock and withstand extreme temperatures, ensuring that the furnaces operate at optimal conditions. This, in turn, leads to more efficient combustion of fuels and raw materials, reducing the release of harmful gases and pollutants into the atmosphere. In addition to their thermal properties, monolithic refractories also possess excellent resistance to chemical attacks and corrosion. This is particularly important in iron and steel plants, where aggressive substances such as molten metal, slag, and gases are present. By providing a protective lining, these refractories prevent the degradation of furnace walls and other equipment, reducing the risk of leaks and emissions. Moreover, monolithic refractories are often used in the construction of pollution control devices, such as flue gas desulfurization systems and baghouses. These systems are designed to capture and remove pollutants from the flue gases generated during iron and steel production. The use of refractories in these applications ensures the durability and longevity of these systems, allowing them to operate efficiently and effectively in reducing emissions. Overall, monolithic refractories contribute significantly to emissions reduction in iron and steel plants through improved energy efficiency, enhanced combustion, corrosion resistance, and support for pollution control systems. By implementing these refractories, the industry can minimize its environmental footprint and move towards more sustainable and responsible production processes.
Q: What are the challenges in repairing and maintaining monolithic refractories?
Repairing and maintaining monolithic refractories poses several challenges. One primary challenge lies in the intricate composition of the materials used in these refractories. They typically consist of various components, including aggregates, binders, and additives. The selection and proportioning of these components significantly affect the refractory's performance and durability, making it difficult to determine the most appropriate repair or maintenance method. Another obstacle arises from the extremely high temperatures at which monolithic refractories operate. These materials are specifically designed to withstand extreme heat, ranging from several hundred to several thousand degrees Celsius. Repairing or maintaining them under such conditions necessitates specialized equipment and techniques to ensure worker safety and repair integrity. Moreover, monolithic refractories often face harsh environments, such as corrosive gases, chemical reactions, and mechanical stresses. These factors can lead to gradual degradation and damage, requiring regular inspections and maintenance. However, identifying and addressing these issues promptly can be challenging as the damage may not always be visible or easily accessible. Furthermore, monolithic refractories are commonly employed in complex industrial processes like steelmaking, cement manufacturing, and petrochemical production. These processes typically involve continuous operation, limiting the available time for repairs and maintenance. Finding suitable windows of opportunity for maintenance and coordinating process shutdowns can pose logistical challenges. Lastly, the cost of repairing and maintaining monolithic refractories can be substantial. The materials used in these refractories tend to be expensive, and the labor and equipment required for repairs and maintenance can accumulate costs. Striking a balance between repair expenses, productivity maintenance, and extending the refractories' service life can challenge plant operators and maintenance teams. In conclusion, the challenges associated with repairing and maintaining monolithic refractories arise from the complex materials used, the high temperatures involved, the harsh operating environments, the complexity of industrial processes, and the cost considerations. Overcoming these challenges necessitates expertise, meticulous planning, and effective coordination to ensure the longevity and optimal performance of monolithic refractories.

Send your message to us

This is not what you are looking for? Post Buying Request

Similar products

Hot products


Hot Searches

Related keywords