Q235/3SP 175MM Blast Furnace Hot Rolled Steel Billet
- Loading Port:
- Tianjin
- Payment Terms:
- TT OR LC
- Min Order Qty:
- 2000 m.t.
- Supply Capability:
- 30000 m.t./month
OKorder Service Pledge
OKorder Financial Service
You Might Also Like
Description of Q235/3SP 175MM Blast Furnace Hot Rolled Steel Billet
Our hot dip galvanised steels consist of a steel substrate with a metallic zinc coating applied by means of a continuous hot dip galvanising process. Metallic zinc coatings are available in steel grades ranging from steel for bending and deep drawing applications, to structural steels and high yield strength steels.
A glossy surface finish obtained under specific skin-pass conditions (either non-skin-passed or skin- passed with smooth cylinders to obtain low roughness) can be provided if required at time of enquiry.
Advantage of Q235/3SP 175MM Blast Furnace Hot Rolled Steel Billet
Uncoated CR steel sheet With the features of in line with the international highest standards in demension and shape, excellent surface finish and properties, the products are mainly used in home appliance and automobile industries.
Galvanized steel sheet(include HDG and EG)
With the features of good corrosion resistance, the products are mainly used in automobile, home appliance, electronics, building and machinery manufacture industries, etc.
Precoated steel sheet With the features of enviromental protection and good processablility, long lasting surface durability, rich in colors, the products are maily used in building, home appliance and furniture industries, etc.
Applications of Q235/3SP 175MM Blast Furnace Hot Rolled Steel Billet
Our hot dip galvanised steels can be used in a very wide range of applications for industrial markets, both indoors and outdoors. Some of the most common applications are:
Building: wide sections for roofing and cladding, doors, door frames, metallic ceilings, partitions, structural members etc
Domestic appliances: all appliances for this sector (both white and brown goods) are manufactured with hot dip galvanised steels
Miscellaneous: electrical cabinets, aeraulic components, air conditioners, road signs etc
Zinc hot dip galvanised steel is suitable for contact with foodstuffs under certain conditions, as specified in European directive 89/109/EEC and French standard NF A 36-712-1. Please contact us for further information on this subject.
Specifications of Q235/3SP 175MM Blast Furnace Hot Rolled Steel Billet
Quality | Q/BQB 440-2003 | JIS G3312-1994 JIS G3321 | EN 10326-2004 | ASTM A653-02a |
EN 10327-2004 | (BASE PLATE) | |||
(BASE PLATE) | ||||
Commercial Steel | DC51D | SGCC SGLCC | DX51D+Z DX51D+AZ | CS Type A/B/C |
Forming Steel | St01,St02,St03 | SGCD1 SGLCD1 | FS Type A, Type B | |
Drawing | DC52D /DC53D | - | DX52D+Z DX52D+AZ | DDS TYPE A/C |
Steel | DX53D+Z DX53D+AZ | |||
Structural | S280GD (StE28) | SGC400 SGLC400 | S280D+Z DX54D+AZ | SS275 |
Steel | S350GD (StE34) | SGC440 SGLC440 | S350D+Z S350D+AZ | SS340 Class1 |
FAQ of Q235/3SP 175MM Blast Furnace Hot Rolled Steel Billet
We have organized several common questions for our clients,may help you sincerely:
1. How Can I Visit There?
Our company is located in Tianjin City, China, near Beijing. You can fly to Tianjin Airport Directly. All our clients, from home or aboard, are warmly welcome to visit us!
2. How Can I Get Some Sample?
We are honored to offer you sample.
3. Why choose CNBM?
Our delivery time about 15-20days for standard sizes, if you have other requirements like hardness, quanity and width ,it is about 20-40days. But don't worry we also try our best for the delivery time ,because time longer and our cost is higher.
- Q:What is the typical production process for steel billets?
- The typical production process for steel billets involves several steps. First, raw materials such as iron ore, coal, and limestone are obtained. These materials are then processed and transformed into iron through a blast furnace or direct reduction process. The iron is further refined in a basic oxygen furnace or an electric arc furnace to remove impurities and adjust the composition. Once the iron is refined, it is cast into large rectangular molds known as ingots. These ingots are then heated and rolled into semi-finished products called blooms or slabs. Blooms are typically square or rectangular in shape, while slabs are flat and rectangular. The next step is to further process the blooms or slabs into billets. This is done by reheating the semi-finished products and passing them through a series of rolling mills. The rolling mills apply pressure to shape the metal and reduce its thickness. This process is known as hot rolling. After hot rolling, the billets are cooled and inspected for any defects. They may undergo additional processes such as surface treatment or heat treatment to improve their properties. The billets are then typically cut into desired lengths and stored before further processing or shipment to customers. Overall, the production process for steel billets involves obtaining raw materials, refining the iron, casting it into semi-finished products, hot rolling, and final inspection and processing. This process ensures that the steel billets meet the required specifications and quality standards before they are used for various applications in industries such as construction, automotive, and manufacturing.
- Q:What are the challenges in welding steel billets?
- Welding steel billets presents various obstacles that need to be addressed. One of the primary hurdles involves achieving proper heat distribution throughout the welding process. Given their considerable size and thickness, steel billets make it difficult to evenly distribute heat across the material. Consequently, this can lead to inconsistencies in the weld, resulting in weak areas or even joint failure. Another challenge revolves around the possibility of distortion and warping during the welding process. The application of heat to the steel causes the material to expand and contract, leading to undesired changes in shape and dimensions. This issue becomes particularly problematic when dealing with larger or more intricate structures, as maintaining the desired shape and dimensions becomes crucial. Furthermore, steel billets may contain impurities and contaminants that can impact the weld's quality. These impurities, such as sulfur, phosphorus, and other elements, can trigger the formation of brittle zones or other defects in the weld. To mitigate these challenges, it is necessary to adequately clean and prepare the billet surface, as well as employ appropriate welding techniques and filler materials. Moreover, the high carbon content commonly found in steel billets makes them susceptible to cracking during the welding process. Carbon acts as a hardening agent in steel and can increase its vulnerability to cracking, particularly if proper preheating and post-weld heat treatment procedures are not followed. Essential measures include controlling the cooling rate and implementing stress-relieving techniques to prevent cracking and ensure weld integrity. Lastly, the sheer size and weight of steel billets can pose logistical challenges during welding. The handling and positioning of these heavy objects necessitate specialized equipment and skilled operators to guarantee safety and accuracy. Additionally, achieving precise alignment and fit-up becomes more complex with larger billets, demanding careful planning and execution. To summarize, welding steel billets involves overcoming challenges such as heat distribution, distortion and warping, impurities and contaminants, carbon-induced cracking, and logistical issues. Successfully navigating these obstacles requires expertise, appropriate equipment, and adherence to proper welding techniques and procedures.
- Q:What is the role of steel billets in the construction of stadiums and arenas?
- Steel billets play a crucial role in the construction of stadiums and arenas as they are the primary raw material used to manufacture structural steel components. These billets are heated and shaped into various forms, such as beams, columns, and trusses, which provide the necessary support and framework for the overall structure. The high strength and durability of steel make it an ideal material to withstand the heavy loads and forces experienced in these large-scale facilities. Additionally, steel billets can be easily fabricated and assembled on-site, ensuring efficient construction and enabling the creation of complex designs and architectural features.
- Q:Use medium frequency furnace (1 million 500 thousand volt ampere) to produce 1 ton cast steel blank, how much kilowatt hour is consumed?
- This depends on the intermediate frequency furnace voltage level and inverter efficiency, the general high voltage will save power, generally 550-700 range, details can refer to wcdlsb site medium frequency furnace data
- Q:How do steel billets contribute to the manufacturing of packaging materials?
- Packaging materials manufacturing heavily relies on steel billets, especially those that necessitate strength and endurance. These semi-finished steel products are typically acquired through continuous casting or hot rolling. Steel billets significantly contribute to the production of steel drums, a pivotal aspect of packaging material manufacturing. Steel drums find extensive use in industries like chemicals, petroleum, and food processing for storing and transporting diverse substances. The robustness and rigidity of steel billets make them an ideal choice for manufacturing these drums, guaranteeing the integrity of the packaging remains uncompromised even under the weight and pressure of their contents. Apart from steel drums, steel billets are also indispensable in the creation of metal cans. Metal cans enjoy broad application in packaging food, beverages, and other consumer goods. They create an excellent barrier against moisture, light, and oxygen, thereby preserving and safeguarding the packaged items. Steel billets are employed in fabricating the can bodies, lids, and bottoms, imparting requisite strength and stability to withstand the pressure during canning and transportation. Furthermore, steel billets play a vital role in manufacturing steel straps and bands for securing and bundling packages. These straps effectively secure heavy and bulky items, preventing shifting or damage during transit. The high tensile strength of steel billets ensures the straps can adequately hold packages together, providing stability and protection. Moreover, steel billets are occasionally utilized in producing corrugated steel sheets. These sheets are commonly employed in manufacturing heavy-duty packaging materials like crates and pallets. Corrugated steel sheets possess excellent strength and rigidity, making them suitable for transporting heavy items over long distances. Steel billets undergo a series of processes, such as rolling, cutting, and shaping, to transform into these sheets, ensuring the final product meets the necessary specifications. In conclusion, steel billets play a pivotal role in packaging material manufacturing. Their strength, durability, and versatility make them ideal for producing steel drums, metal cans, straps, and corrugated steel sheets. By utilizing steel billets, manufacturers can create packaging materials capable of meeting the demands of diverse industries, ensuring the safe and secure transportation of goods.
- Q:What are the different shapes available for steel billets?
- There are several different shapes available for steel billets, including square, round, rectangular, and hexagonal shapes.
- Q:How are steel billets used in the manufacturing of kitchen appliances?
- Steel billets are used in the manufacturing of kitchen appliances as the primary raw material. These billets are heated and then shaped or molded into various components such as bodies, frames, handles, or cooktops, which form the structural foundation of kitchen appliances. The high strength and durability of steel make it an ideal choice for withstanding the rigors of everyday use in kitchen appliances, ensuring their longevity and quality.
- Q:Can steel billets be welded together?
- Indeed, it is possible to weld steel billets together. Welding serves as a widely employed technique for connecting steel billets, which are partially finished goods taking the shape of solid metal rectangles or squares. Through the application of heat and pressure, the steel billets can be combined, resulting in a robust and resilient bond. The utilization of welding methods such as arc welding, gas welding, and laser welding is contingent upon the particular demands and characteristics of the steel. Nevertheless, it is imperative to acknowledge that the correct welding approach and proficiency are vital in guaranteeing a triumphant and superior weld joint.
- Q:Are billet metals within the metal range?
- Ah, metal materials, ferrous metals, color metals, two kinds of billets belong to ferrous metals, copper and copper alloys, aluminum and aluminum alloys, belonging to color metal
- Q:How do steel billets contribute to the manufacturing of automotive components?
- The manufacturing of automotive components heavily relies on steel billets, which are semi-finished metal pieces. These billets serve as the initial material for producing various automotive parts. Forging is a key process in which steel billets play a crucial role. It involves shaping the metal billets under high pressure and temperature, typically using a hammer or press. This technique enhances the strength, durability, and reliability of the components, making them suitable for the challenging conditions of the automotive industry. Engine components, such as crankshafts, connecting rods, and piston rods, also benefit from the use of steel billets. These parts require high strength and resistance to wear and tear. Starting with high-quality steel billets ensures that the resulting components possess the necessary mechanical properties to withstand the stresses and forces experienced by the engine during operation. Steel billets are additionally utilized in the production of suspension components, including control arms and stabilizer bars. These components are responsible for maintaining vehicle stability, handling, and comfort. By using steel billets, the suspension components can withstand the heavy loads and impacts encountered on the road, delivering a smooth and safe driving experience. Moreover, steel billets contribute to the manufacturing of safety-related automotive components. For example, they are used in producing structural components like chassis frames and body reinforcements. These components are vital for protecting occupants in the event of a collision or impact, and steel billets provide the necessary strength and rigidity to ensure their effectiveness. In summary, steel billets are an essential element in the manufacturing of automotive components. They enable the production of robust, long-lasting, and dependable parts, ensuring the overall performance, safety, and longevity of vehicles. Automotive manufacturers can meet the industry's demanding requirements and deliver high-performance vehicles to consumers by starting with high-quality steel billets.
1. Manufacturer Overview |
|
---|---|
Location | |
Year Established | |
Annual Output Value | |
Main Markets | |
Company Certifications |
2. Manufacturer Certificates |
|
---|---|
a) Certification Name | |
Range | |
Reference | |
Validity Period |
3. Manufacturer Capability |
|
---|---|
a)Trade Capacity | |
Nearest Port | |
Export Percentage | |
No.of Employees in Trade Department | |
Language Spoken: | |
b)Factory Information | |
Factory Size: | |
No. of Production Lines | |
Contract Manufacturing | |
Product Price Range |
Send your message to us
Q235/3SP 175MM Blast Furnace Hot Rolled Steel Billet
- Loading Port:
- Tianjin
- Payment Terms:
- TT OR LC
- Min Order Qty:
- 2000 m.t.
- Supply Capability:
- 30000 m.t./month
OKorder Service Pledge
OKorder Financial Service
Similar products
Hot products
Hot Searches
Related keywords