Q235/3SP 120MM Blast Furnace Hot Rolled Steel Billet
- Loading Port:
- Tianjin
- Payment Terms:
- TT OR LC
- Min Order Qty:
- 2000 m.t.
- Supply Capability:
- 30000 m.t./month
OKorder Service Pledge
OKorder Financial Service
You Might Also Like
Description of Q235/3SP 120MM Blast Furnace Hot Rolled Steel Billet
Our hot dip galvanised steels consist of a steel substrate with a metallic zinc coating applied by means of a continuous hot dip galvanising process. Metallic zinc coatings are available in steel grades ranging from steel for bending and deep drawing applications, to structural steels and high yield strength steels.
A glossy surface finish obtained under specific skin-pass conditions (either non-skin-passed or skin- passed with smooth cylinders to obtain low roughness) can be provided if required at time of enquiry.
Advantage of Q235/3SP 120MM Blast Furnace Hot Rolled Steel Billet
Uncoated CR steel sheet With the features of in line with the international highest standards in demension and shape, excellent surface finish and properties, the products are mainly used in home appliance and automobile industries.
Galvanized steel sheet(include HDG and EG)
With the features of good corrosion resistance, the products are mainly used in automobile, home appliance, electronics, building and machinery manufacture industries, etc.
Precoated steel sheet With the features of enviromental protection and good processablility, long lasting surface durability, rich in colors, the products are maily used in building, home appliance and furniture industries, etc.
Applications of Q235/3SP 120MM Blast Furnace Hot Rolled Steel Billet
Our hot dip galvanised steels can be used in a very wide range of applications for industrial markets, both indoors and outdoors. Some of the most common applications are:
Building: wide sections for roofing and cladding, doors, door frames, metallic ceilings, partitions, structural members etc
Domestic appliances: all appliances for this sector (both white and brown goods) are manufactured with hot dip galvanised steels
Miscellaneous: electrical cabinets, aeraulic components, air conditioners, road signs etc
Zinc hot dip galvanised steel is suitable for contact with foodstuffs under certain conditions, as specified in European directive 89/109/EEC and French standard NF A 36-712-1. Please contact us for further information on this subject.
Specifications of Q235/3SP 120MM Blast Furnace Hot Rolled Steel Billet
Quality | Q/BQB 440-2003 | JIS G3312-1994 JIS G3321 | EN 10326-2004 | ASTM A653-02a |
EN 10327-2004 | (BASE PLATE) | |||
(BASE PLATE) | ||||
Commercial Steel | DC51D | SGCC SGLCC | DX51D+Z DX51D+AZ | CS Type A/B/C |
Forming Steel | St01,St02,St03 | SGCD1 SGLCD1 | FS Type A, Type B | |
Drawing | DC52D /DC53D | - | DX52D+Z DX52D+AZ | DDS TYPE A/C |
Steel | DX53D+Z DX53D+AZ | |||
Structural | S280GD (StE28) | SGC400 SGLC400 | S280D+Z DX54D+AZ | SS275 |
Steel | S350GD (StE34) | SGC440 SGLC440 | S350D+Z S350D+AZ | SS340 Class1 |
FAQ of Q235/3SP 120MM Blast Furnace Hot Rolled Steel Billet
We have organized several common questions for our clients,may help you sincerely:
1. How Can I Visit There?
Our company is located in Tianjin City, China, near Beijing. You can fly to Tianjin Airport Directly. All our clients, from home or aboard, are warmly welcome to visit us!
2. How Can I Get Some Sample?
We are honored to offer you sample.
3. Why choose CNBM?
Our delivery time about 15-20days for standard sizes, if you have other requirements like hardness, quanity and width ,it is about 20-40days. But don't worry we also try our best for the delivery time ,because time longer and our cost is higher.
- Q: How do steel billets contribute to the manufacturing of automotive parts?
- The manufacturing of automotive parts heavily relies on steel billets, as they serve as the primary raw material for various components. Steel billets possess excellent strength, durability, and malleability properties, making them indispensable for automotive manufacturers. To begin with, steel billets play a crucial role in the production of engine parts such as crankshafts, connecting rods, and camshafts. These components demand high strength and precision, which can be achieved by utilizing steel billets as the initial material. By heating, forging, and machining the billets, they are shaped into the desired form, ensuring the necessary strength and accuracy for optimal engine performance. Furthermore, suspension and chassis components also heavily rely on steel billets. Control arms, axles, and frame sections necessitate exceptional toughness and resistance to endure the constant stresses and strains experienced by vehicles. Steel billets provide the required mechanical properties to guarantee the safety and longevity of these vital automotive components. In addition, various transmission and drivetrain parts are manufactured using steel billets. Gears, shafts, and differential components require outstanding wear resistance, strength, and dimensional accuracy to ensure the efficiency and reliability of the vehicle's power transmission system. Through forging and machining, steel billets are transformed into these parts, meeting the rigorous standards set by the automotive industry. Moreover, steel billets contribute to the production of body and exterior components such as doors, hoods, fenders, and frames. These parts necessitate high strength, corrosion resistance, and the ability to be shaped into complex forms. Steel billets can be hot or cold rolled, pressed, stamped, or welded to produce these components, providing the necessary structural integrity and aesthetics for automotive bodies. In conclusion, the superior mechanical properties and versatility of steel billets make them vital in the manufacturing of automotive parts. They enable the production of high-quality, durable, and reliable components that meet the demanding requirements of the automotive industry. The use of steel billets ensures the safety, performance, and longevity of vehicles, contributing to the overall quality of the automotive manufacturing process.
- Q: What are the main factors affecting the fatigue strength of steel billets?
- There are several main factors that can affect the fatigue strength of steel billets. 1. Material Composition: The composition of the steel billet, including the type and amount of alloying elements, plays a significant role in determining its fatigue strength. Elements like carbon, manganese, and silicon can influence the material's ability to resist fatigue and withstand cyclic loading. 2. Surface Quality: The surface quality of steel billets is crucial in determining their fatigue strength. Surface defects such as cracks, scratches, or pits can act as stress concentrators, leading to premature fatigue failure. Therefore, proper surface preparation and inspection are necessary to ensure high fatigue resistance. 3. Heat Treatment: The heat treatment process used to modify the microstructure of the steel billet can significantly affect its fatigue strength. Proper heat treatment techniques like quenching and tempering can improve the material's fatigue resistance by enhancing its hardness, strength, and toughness. 4. Grain Size: The grain size of the steel billet's microstructure also plays a role in determining its fatigue strength. Finer grains generally exhibit higher fatigue resistance due to reduced stress concentration and improved grain boundary strength. 5. Residual Stress: Residual stresses, which can result from various manufacturing processes, can significantly affect the fatigue strength of steel billets. High levels of residual stress can act as a starting point for fatigue cracks, reducing the material's fatigue life. 6. Operating Conditions: The operating conditions, including the applied cyclic load magnitude, frequency, and temperature, can affect the fatigue strength of steel billets. Higher loads, faster cycling rates, and elevated temperatures can all decrease the material's fatigue life. 7. Environmental Factors: The environment in which the steel billet operates can also impact its fatigue strength. Factors like humidity, corrosive gases, and exposure to chemicals can accelerate fatigue crack initiation and propagation, leading to reduced fatigue resistance. Understanding and considering these main factors affecting the fatigue strength of steel billets is crucial in designing components and structures that can withstand cyclic loading and ensure long-term reliability.
- Q: What is the typical tensile strength of a steel billet?
- The typical tensile strength of a steel billet can vary depending on factors such as the specific grade of steel and the manufacturing process. However, on average, steel billets typically have a tensile strength ranging from 400 to 600 megapascals (MPa).
- Q: How are steel billets used in the production of railway components?
- Steel billets are used in the production of railway components by being heated and molded into specific shapes, such as rails, sleepers, and fasteners. These billets serve as the raw material that is further processed and refined to create durable and strong components that can withstand the heavy loads and stresses of railway operations.
- Q: Billet production process
- Billets are produced by three process methods:First, through the steelmaking system of continuous casting equipment, from the direct pouring of molten steel billet;
- Q: What are the main challenges in sourcing steel billets?
- There are several main challenges in sourcing steel billets. Firstly, one of the key challenges is ensuring a consistent and reliable supply of high-quality steel billets. Steel billets are typically sourced from steel mills or manufacturers, and it is crucial to find suppliers that can consistently meet the required specifications and standards. This involves conducting thorough research and due diligence to identify reputable and reliable suppliers who have a track record of producing high-quality billets. Another challenge is managing the cost and price fluctuations of steel billets. Steel prices are subject to various factors such as global demand, raw material costs, and market dynamics. As a result, the price of steel billets can be volatile, which can impact procurement decisions and budgets. Sourcing professionals need to carefully monitor market trends and negotiate pricing contracts to ensure the best value for their organization. Furthermore, logistics and transportation can pose challenges in sourcing steel billets. Steel billets are heavy and bulky, making transportation and logistics complex. Coordinating deliveries, managing shipping schedules, and ensuring timely arrival of the billets can be challenging, especially when sourcing from international suppliers. It is important to work closely with reliable logistics partners and have a robust supply chain management system in place to overcome these challenges. Quality control is another crucial aspect in sourcing steel billets. Due to the critical nature of steel in various industries, it is essential to ensure that the billets meet the required quality standards. This involves conducting quality inspections, reviewing certifications, and performing material testing to verify the integrity and properties of the billets. Regular audits and inspections should be conducted to maintain consistent quality throughout the sourcing process. Lastly, regulatory compliance and trade restrictions can present challenges in sourcing steel billets. Import/export regulations, tariffs, and trade barriers can impact the availability and cost of steel billets from certain regions. Sourcing professionals need to stay updated with the latest regulations and trade policies to navigate these challenges and ensure compliance with the applicable laws. In conclusion, the main challenges in sourcing steel billets include ensuring a consistent supply of high-quality billets, managing price fluctuations, handling logistics and transportation, maintaining quality control, and complying with regulatory requirements. Overcoming these challenges requires careful supplier selection, effective negotiation, robust supply chain management, and staying informed about market trends and regulations.
- Q: What are the factors that affect the mechanical properties of steel billets?
- The mechanical properties of steel billets are influenced by several factors. These factors include the chemical composition, heat treatment, microstructure, grain size, processing conditions, surface condition, and environmental factors. 1. Chemical composition: The mechanical properties of steel billets are determined by the levels of carbon, manganese, silicon, and other alloying elements in the steel. These elements impact the strength, hardness, and ductility of the billets. 2. Heat treatment: By controlling the temperature and duration of heating and cooling, the mechanical properties of steel billets can be significantly altered. Techniques like annealing, quenching, and tempering can enhance the hardness, toughness, and overall strength of the steel. 3. Microstructure: The mechanical properties of steel are greatly influenced by its microstructure, which is determined by factors like cooling rate and alloying elements. Different phases, such as ferrite, pearlite, and martensite, affect the strength, ductility, and toughness of the billets. 4. Grain size: The size and distribution of grains in the steel billets have an impact on their mechanical properties. Finer grain sizes generally result in improved strength and toughness, while larger grain sizes may lead to reduced mechanical properties. 5. Processing conditions: The mechanical properties of steel billets are influenced by the processing conditions during production, such as temperature and rate of deformation. Techniques like rolling, forging, and extrusion affect the grain structure and overall mechanical behavior of the steel. 6. Surface condition: The mechanical properties of steel billets can be significantly affected by the surface condition, including the presence of defects like cracks, voids, or surface contamination. Surface defects act as stress concentration points and reduce the overall strength and integrity of the steel. 7. Environmental factors: The mechanical properties of steel billets can be influenced by environmental conditions like temperature, humidity, and exposure to corrosive substances. Corrosion can decrease strength and structural integrity, while high temperatures can cause softening or thermal degradation of the steel. Considering these factors is crucial in the design and manufacturing of steel billets to ensure that the desired mechanical properties are achieved for specific applications.
- Q: 20 what is the difference between manganese silicon steel billet and Q235 billet?
- In brief, the ingredients are different and the uses are different.
- Q: What are the different surface defects found in alloy steel billets?
- There are several different surface defects that can be found in alloy steel billets. These defects can occur during the production process and can have an impact on the quality and performance of the final product. Some of the common surface defects found in alloy steel billets include: 1. Scale: Scale is a thin layer of oxide that forms on the surface of the billet during the heating and cooling process. It can be caused by exposure to air or by the presence of impurities in the steel. Scale can negatively affect the surface finish and can also lead to corrosion. 2. Cracks: Cracks can occur on the surface of the billet due to various reasons such as improper cooling, excessive stress, or improper handling. These cracks can weaken the structural integrity of the billet and can lead to failure during subsequent processing or in the final product. 3. Pits: Pits are small depressions or cavities that can be found on the surface of the billet. They can be caused by the presence of impurities or by the reaction of the steel with the environment. Pits can affect the surface finish and can also act as stress concentration points, leading to further damage or failure. 4. Laminations: Laminations are layers or sheets of non-metallic material that can be found within the billet. They can occur due to incomplete bonding during the production process or due to the presence of impurities in the steel. Laminations can weaken the billet and can lead to failure under load. 5. Inclusions: Inclusions are non-metallic particles or impurities that can be found within the steel. They can be introduced during the production process or can be present in the raw materials. Inclusions can affect the mechanical properties of the steel and can lead to reduced strength, toughness, and ductility. 6. Decarburization: Decarburization is the loss of carbon from the surface of the steel. It can occur during the heating process or due to exposure to air. Decarburization can result in reduced hardness and strength in the affected area. It is important to detect and address these surface defects in alloy steel billets to ensure the production of high-quality and reliable products. Various inspection and testing methods, such as visual inspection, ultrasonic testing, and magnetic particle inspection, can be employed to identify and assess these defects.
- Q: How do steel billets contribute to the mining industry?
- Steel billets are an important component of the mining industry as they play a crucial role in the production of various mining equipment and infrastructure. These billets, which are semi-finished steel products, are used to manufacture a wide range of tools and machinery required for mining activities. One of the primary applications of steel billets in the mining industry is in the production of mining machinery and equipment. These billets are used to create the structural components of heavy machinery such as excavators, bulldozers, and drilling rigs. The strength and durability of steel make it an ideal material choice for these applications, as it can withstand the harsh conditions and heavy loads encountered in mining operations. Steel billets are also utilized in the construction of mining infrastructure. Mining operations require the construction of various structures such as conveyor systems, processing plants, and storage facilities. Steel billets are used to fabricate the structural elements of these buildings, providing the necessary strength and stability to support the mining operations. In addition, steel billets are essential for manufacturing mining tools and equipment. Tools such as drills, hammers, and picks are made from steel billets due to their strength and hardness. These tools are used in various mining processes, including exploration, extraction, and processing of minerals. Furthermore, steel billets contribute to the mining industry by enabling the transportation of extracted minerals. Steel billets are used to manufacture rail tracks and wagons, which are essential for the transportation of minerals from the mining site to processing facilities or ports for export. Overall, steel billets are a vital component of the mining industry, supporting the production of machinery, infrastructure, tools, and transportation systems. Their strength, durability, and versatility make them an indispensable material in the mining sector, helping to drive its growth and efficiency.
Send your message to us
Q235/3SP 120MM Blast Furnace Hot Rolled Steel Billet
- Loading Port:
- Tianjin
- Payment Terms:
- TT OR LC
- Min Order Qty:
- 2000 m.t.
- Supply Capability:
- 30000 m.t./month
OKorder Service Pledge
OKorder Financial Service
Similar products
Hot products
Hot Searches
Related keywords