Q235/3SP 120MM Blast Furnace Hot Rolled Steel Billet
- Loading Port:
- Tianjin
- Payment Terms:
- TT OR LC
- Min Order Qty:
- 2000 m.t.
- Supply Capability:
- 30000 m.t./month
OKorder Service Pledge
OKorder Financial Service
You Might Also Like
Description of Q235/3SP 120MM Blast Furnace Hot Rolled Steel Billet
Our hot dip galvanised steels consist of a steel substrate with a metallic zinc coating applied by means of a continuous hot dip galvanising process. Metallic zinc coatings are available in steel grades ranging from steel for bending and deep drawing applications, to structural steels and high yield strength steels.
A glossy surface finish obtained under specific skin-pass conditions (either non-skin-passed or skin- passed with smooth cylinders to obtain low roughness) can be provided if required at time of enquiry.
Advantage of Q235/3SP 120MM Blast Furnace Hot Rolled Steel Billet
Uncoated CR steel sheet With the features of in line with the international highest standards in demension and shape, excellent surface finish and properties, the products are mainly used in home appliance and automobile industries.
Galvanized steel sheet(include HDG and EG)
With the features of good corrosion resistance, the products are mainly used in automobile, home appliance, electronics, building and machinery manufacture industries, etc.
Precoated steel sheet With the features of enviromental protection and good processablility, long lasting surface durability, rich in colors, the products are maily used in building, home appliance and furniture industries, etc.
Applications of Q235/3SP 120MM Blast Furnace Hot Rolled Steel Billet
Our hot dip galvanised steels can be used in a very wide range of applications for industrial markets, both indoors and outdoors. Some of the most common applications are:
Building: wide sections for roofing and cladding, doors, door frames, metallic ceilings, partitions, structural members etc
Domestic appliances: all appliances for this sector (both white and brown goods) are manufactured with hot dip galvanised steels
Miscellaneous: electrical cabinets, aeraulic components, air conditioners, road signs etc
Zinc hot dip galvanised steel is suitable for contact with foodstuffs under certain conditions, as specified in European directive 89/109/EEC and French standard NF A 36-712-1. Please contact us for further information on this subject.
Specifications of Q235/3SP 120MM Blast Furnace Hot Rolled Steel Billet
Quality | Q/BQB 440-2003 | JIS G3312-1994 JIS G3321 | EN 10326-2004 | ASTM A653-02a |
EN 10327-2004 | (BASE PLATE) | |||
(BASE PLATE) | ||||
Commercial Steel | DC51D | SGCC SGLCC | DX51D+Z DX51D+AZ | CS Type A/B/C |
Forming Steel | St01,St02,St03 | SGCD1 SGLCD1 | FS Type A, Type B | |
Drawing | DC52D /DC53D | - | DX52D+Z DX52D+AZ | DDS TYPE A/C |
Steel | DX53D+Z DX53D+AZ | |||
Structural | S280GD (StE28) | SGC400 SGLC400 | S280D+Z DX54D+AZ | SS275 |
Steel | S350GD (StE34) | SGC440 SGLC440 | S350D+Z S350D+AZ | SS340 Class1 |
FAQ of Q235/3SP 120MM Blast Furnace Hot Rolled Steel Billet
We have organized several common questions for our clients,may help you sincerely:
1. How Can I Visit There?
Our company is located in Tianjin City, China, near Beijing. You can fly to Tianjin Airport Directly. All our clients, from home or aboard, are warmly welcome to visit us!
2. How Can I Get Some Sample?
We are honored to offer you sample.
3. Why choose CNBM?
Our delivery time about 15-20days for standard sizes, if you have other requirements like hardness, quanity and width ,it is about 20-40days. But don't worry we also try our best for the delivery time ,because time longer and our cost is higher.
- Q: How are steel billets used in the production of oil and gas machinery?
- The production of oil and gas machinery heavily relies on steel billets. These billets are essentially semi-finished pieces of steel that undergo further processing to produce various components needed in the oil and gas industry. To begin with, steel billets are essential in manufacturing the key structural components of oil and gas machinery, such as frames, bases, and casings. These components provide the necessary strength, stability, and support to the equipment, ensuring their safe and efficient operation even in harsh operating conditions. Furthermore, steel billets are also utilized in the production of critical rotating parts, including shafts, gears, and turbines. These components experience high loads, intense pressure, and extreme temperatures, making exceptional strength and durability a requirement. Steel billets, known for their superior mechanical properties, are an ideal material for manufacturing such parts. In addition, steel billets are employed in the production of valves, fittings, and connectors that are integral to oil and gas machinery. These components are responsible for controlling the flow of oil or gas, regulating pressure, and ensuring secure connections between various equipment and pipelines. Steel billets are chosen for these applications due to their excellent corrosion resistance, which is crucial in environments where oil and gas are present. Moreover, steel billets find application in the fabrication of heat exchangers and pressure vessels used in the oil and gas industry. Heat exchangers play a vital role in cooling or heating fluids, while pressure vessels store and transport hazardous substances safely. Steel billets are preferred for these applications due to their high thermal conductivity, excellent weldability, and resistance to extreme pressures. In summary, steel billets are extensively utilized in the production of oil and gas machinery because of their exceptional mechanical properties, corrosion resistance, and thermal conductivity. These billets provide the necessary strength, durability, and reliability to the components and equipment required in the oil and gas industry, ensuring safe and efficient operations in this critical sector.
- Q: Can steel billets be customized in terms of shape and size?
- Steel billets have the capability to be personalized when it comes to their shape and size. These semi-finished products are typically rectangular in form and are utilized as raw materials for various manufacturing procedures. Nonetheless, they can be modified to fulfill specific requirements through a technique known as billet rolling or cross-rolling. Throughout this procedure, the steel billets are subjected to a series of rolls that are specially designed to exert pressure and force, resulting in their reshaping. This permits the customization of the billets into various shapes and sizes, such as square, round, or hexagonal, depending on the desired final product. Furthermore, the size of the steel billets can also be tailored. The initial dimensions of the billets can be altered by either increasing or decreasing their length, width, and height. This adaptability in customization empowers manufacturers to fabricate steel billets that best suit their specific production requirements. To sum up, steel billets can undoubtedly be customized in terms of both shape and size through the process of billet rolling. This empowers manufacturers to adjust the billets according to their desired specifications, enabling the creation of a wide array of products utilizing steel as a primary material.
- Q: How do steel billets contribute to the manufacturing of textile machinery?
- Due to their mechanical properties and versatility, steel billets are crucial in the manufacturing of textile machinery. Essentially semi-finished steel products, they come in rectangular or square shapes and serve as raw material in various industries, including textile machinery manufacturing. The manufacturing of textile machinery greatly benefits from steel billets, particularly in the production of structural components. These components, such as frames and supports, require durability and sturdiness for stability and efficient functioning. Steel billets, with their high strength and rigidity, are an ideal choice for these components. They can be easily shaped, machined, or welded to create intricate and complex structures capable of withstanding the heavy loads and vibrations associated with textile machinery. Steel billets also find application in the production of moving parts like shafts and gears. These parts must possess excellent wear resistance, high tensile strength, and good machinability to ensure smooth operation and a long service life. Through processes such as forging, rolling, or machining, steel billets can be transformed into these crucial parts, providing the necessary mechanical properties and precision required in textile machinery. Furthermore, steel billets are extensively used in the manufacturing of tooling and molds for textile machinery production. These tools and molds are essential for shaping and forming various components. By subjecting steel billets to heat treatment and precise machining processes, they can be transformed into high-quality tooling and molds that offer exceptional dimensional accuracy and durability. This significantly contributes to the overall efficiency and quality of textile machinery production. In conclusion, steel billets play a pivotal role in textile machinery manufacturing by providing raw material for structural components, moving parts, and tooling. Their mechanical properties, versatility, and ease of fabrication make them indispensable in the industry. Steel billets ensure the durability, precision, and functionality of textile machinery, ultimately enhancing the overall performance and reliability of the equipment.
- Q: What are the common surface defects in steel billets?
- Some common surface defects that can be found in steel billets include: 1. Scale: This is a thin layer of oxide that forms on the surface of the billet during the hot rolling process. It can appear as a flaky or rough texture and is caused by the reaction of the steel with oxygen in the air. 2. Cracks: Cracks can occur due to a variety of reasons, such as improper cooling or excessive stresses during the manufacturing process. These cracks can be either longitudinal or transverse and can greatly affect the structural integrity of the billet. 3. Pitting: Pitting refers to small depressions or cavities that can form on the surface of the billet. It is often caused by localized corrosion or reactions with impurities in the steel. 4. Lamination: Lamination defects occur when there are layers or sheets of non-metallic inclusions within the steel billet. These inclusions can weaken the billet and affect its mechanical properties. 5. Surface porosity: Surface porosity refers to the presence of small voids or bubbles on the surface of the billet. It can be caused by gas entrapment during the solidification process or by improper casting techniques. 6. Inclusions: Inclusions are non-metallic substances that can be present in the steel billet. These can include oxides, sulfides, or other impurities, and can affect the billet's mechanical properties. It is important to identify and address these surface defects in steel billets as they can impact the quality and performance of the final product. Various inspection techniques, such as visual inspection, ultrasonic testing, or magnetic particle testing, can be employed to detect and eliminate these defects to ensure the production of high-quality steel products.
- Q: How are steel billets recycled?
- Steel billets are recycled through a process known as steel billet recycling. This process involves the collection of steel billets from various sources such as manufacturing plants, construction sites, and scrap yards. The collected steel billets are then transported to a recycling facility where they undergo a series of steps to be transformed into new steel products. The first step in steel billet recycling is sorting and cleaning. The collected billets are sorted based on their size, shape, and quality. Any impurities or foreign materials are removed during this stage. Once the billets are sorted and cleaned, they are ready for the next step in the recycling process. The second step is melting. The cleaned steel billets are then melted down in a furnace at extremely high temperatures. This melting process helps to separate any remaining impurities and allows the steel to be shaped into new forms. The molten steel is then poured into molds or cast into different shapes depending on the desired end product. After the steel has cooled and solidified, it undergoes further processing to achieve the desired specifications. This may involve rolling, forging, or extruding the steel billets to create various steel products such as bars, rods, or sheets. These newly formed steel products are then inspected for quality and undergo rigorous testing to ensure they meet industry standards. The final step in steel billet recycling is distribution and usage. The recycled steel products are transported to various industries such as construction, automotive, or manufacturing, where they are used to create a wide range of products. By recycling steel billets, we can reduce the demand for raw materials, conserve energy, and minimize environmental impact. In conclusion, steel billets are recycled through a process that involves sorting, cleaning, melting, shaping, and distributing. This recycling process allows us to reuse steel billets and transform them into new steel products, contributing to a more sustainable and environmentally friendly approach to steel production.
- Q: What are the potential applications of steel billets in the agricultural sector?
- The agricultural sector can benefit greatly from the various potential applications of steel billets. One primary use of steel billets in agriculture involves their utilization in the manufacturing of farm equipment and machinery. Plows, cultivators, and seeders, which are essential for tilling the soil, planting seeds, and maintaining agricultural land, can be produced using steel billets to create durable and sturdy components. Steel billets also find usefulness in the construction of storage structures on farms. Due to its strength and durability, steel is an ideal material for constructing grain silos, barns, and sheds. These structures provide long-lasting and reliable solutions for storing crops, livestock, and equipment. Furthermore, steel billets can be used to fabricate fences and gates for animal enclosures. Steel fences offer superior strength and security, ensuring the safety of farm animals and preventing them from wandering off. These fences are also resistant to corrosion and capable of enduring harsh weather conditions. Moreover, steel billets can be employed in the construction of irrigation systems and water management infrastructure on farms. Steel pipes and fittings are commonly used to transport water from a source to the fields, promoting proper irrigation and efficient water distribution. Lastly, steel billets can be employed in the production of machinery used for processing agricultural products. Grain mills, threshers, and sorting machines, for example, can be manufactured with steel components, aiding in the processing and packaging of crops. Overall, the potential applications of steel billets in the agricultural sector are extensive and diverse. From farm equipment and storage structures to fencing and irrigation systems, steel billets play a vital role in enhancing efficiency, durability, and productivity in agriculture.
- Q: What are the environmental impacts of producing steel billets?
- The production of steel billets has several environmental impacts. One significant impact is the emission of greenhouse gases, particularly carbon dioxide, during the steelmaking process. This contributes to climate change and global warming. Additionally, the extraction of raw materials for steel production can lead to deforestation, habitat destruction, and soil erosion. Steel production also consumes large amounts of energy and water, which can strain natural resources and contribute to pollution. Proper management of these impacts, such as adopting more sustainable production methods and recycling, can help mitigate the environmental effects of steel billet production.
- Q: What is the role of steel billets in the construction of underground tunnels?
- Steel billets play a crucial role in the construction of underground tunnels as they are used to create the reinforced steel framework. These billets are shaped into various structural components, such as bars and beams, which provide strength and stability to the tunnel structure. The reinforced steel framework helps to distribute the load evenly, withstand the pressure from the surrounding soil or rock, and prevent any potential collapse or deformation of the tunnel. Therefore, steel billets contribute significantly to the overall durability and safety of underground tunnels.
- Q: What is the role of steel billets in the construction of railway stations?
- Steel billets play a crucial role in the construction of railway stations as they are used to fabricate various structural components, such as beams, columns, and trusses. These components provide the necessary support and stability to the station infrastructure, ensuring the safety and durability of the building. Steel billets are also utilized in the construction of railway tracks, where they are transformed into rails, sleepers, and other track elements, enabling the smooth and efficient operation of trains.
- Q: How are steel billets made?
- The process of making steel billets is known as casting. It begins by melting raw materials like iron ore, coal, and limestone in a blast furnace until they become molten iron. This molten iron is then further purified in either a basic oxygen furnace or an electric arc furnace to adjust its composition and remove impurities. Once the desired composition is achieved, the molten iron is poured into a continuous casting machine. This machine contains a copper mold that is cooled by water, which shapes the molten iron into a solid billet. As the molten iron is poured into the mold, it cools rapidly and solidifies, creating a continuous length of solid steel. The billet is then cut to the desired length and moved to a storage area to cool down even more before undergoing further processing. The cooling process is vital as it helps improve the internal structure and overall quality of the billet. After cooling, the steel billets can undergo various treatments, such as heat treatment or surface conditioning, to enhance their mechanical properties and surface finish. They can also be processed further into different shapes and sizes through methods like rolling, forging, or extrusion to meet specific requirements of customers. In summary, the production of steel billets involves melting the raw materials, purifying the molten iron, casting it into a continuous mold, and subsequently cooling and processing the solid billets. This process guarantees the production of high-quality steel billets that are essential components for industries such as construction, automotive, and manufacturing.
Send your message to us
Q235/3SP 120MM Blast Furnace Hot Rolled Steel Billet
- Loading Port:
- Tianjin
- Payment Terms:
- TT OR LC
- Min Order Qty:
- 2000 m.t.
- Supply Capability:
- 30000 m.t./month
OKorder Service Pledge
OKorder Financial Service
Similar products
Hot products
Hot Searches
Related keywords