• Prime square steel billet best price from China System 1
  • Prime square steel billet best price from China System 2
Prime square steel billet best price from China

Prime square steel billet best price from China

Ref Price:
get latest price
Loading Port:
Dalian
Payment Terms:
TT OR LC
Min Order Qty:
1000 m.t.
Supply Capability:
14721 m.t./month

Add to My Favorites

Follow us:


OKorder Service Pledge

Quality Product, Order Online Tracking, Timely Delivery

OKorder Financial Service

Credit Rating, Credit Services, Credit Purchasing

Specification

Tolerance:
Strictly according to the G/B and JIS standard
Size:
100mm to 165mm
Length:
6~12 M
Grade:
Q195/Q215/Q235/Q275

 

Rectangular billet continuous casting billet and mainly general carbon steel, low carbon low silicon cold-rolled material, high quality carbon structural steel, high strength low alloy steel, special steel, etc. 

 

Steel billets have distinct characteristics as compared with already furnished steel bars and products. 

Billets have a specific grain structure, which enables the metal to be processed more intricately. Steel billets 

are also known for their malleability and ductility, especially when exposed to varying temperatures during 

shaping and molding.

Gade:

Standard

C(%)

Mn(%)

S(%)

P(%)

Si(%)

Q195

≤0.12

≤0.50

≤0.040

≤0.035

≤0.30

Q235

≤0.20

≤1.40

≤0.045

≤0.045

≤0.35

Q275

≤0.22

≤1.50

≤0.045

≤0.045

≤0.35

20MnSi

0.17-0.25

1.2-1.6

≤ 0.050

≤ 0.050

0.40-0.80

3SP

0.14-0.22

0.40-0.85

≤ 0.050

≤ 0.040

0.05-0.15

5SP

0.28-0.37

0.50-1.00

≤ 0.050

≤ 0.040

0.15-0.30

 

Prime square steel billet best price from China

Prime square steel billet best price from China

Prime square steel billet best price from China

Prime square steel billet best price from China

Other Specifications

Squar Tolerance: ±4

Length Tolerance: +100mm

Romboidity/Difference Diagonals: no more than 0.7%

Camber: no more than 1.5%(%)

Twist: no more than 3 degrees per 1 meter length

Our Advantage  

* Professional Personnel of Steel Trading

* Strong Steel Industry Background

* Conveniently Geographic Location

Our Commitment

* Sincere, Practical, Efficient and Developing

* High Quality Steel Production

* Competitive Price and Timely Delivery

 

Packing : 

Within 30 days

1.Standard export package 
2.In bundles with steel strips 
3.As the requirements of the customers

FAQ:

Q: How to get quotation?
A: When we receive your detailed enquiry, we will set the best price based on standard, 
steel grade, outer diameter, wall thickness, quantity, country. 
And we will send quotation to your mailbox.

Q:How to guarantee the quality of the products?

A:We have established the international advanced quality management system,every link from raw material 

to final product we have strict quality test;We resolutely put an end to unqualified products flowing into the market. 

At the same time, we will provide necessary follow-up service assurance.

Q:How long can we receive the product after purchase?

A :In the purchase of product within three working days, We will arrange the factory delivery as soon as possible. 

The pecific time of receiving is related to the state and position of customers.

 

 

 

Q: How are steel billets inspected for internal defects?
Steel billets are inspected for internal defects using various non-destructive testing (NDT) techniques. One common method is ultrasonic testing (UT), where high-frequency sound waves are used to detect defects inside the billet. A transducer sends ultrasonic waves into the billet, and the reflected waves are analyzed to identify any internal flaws. UT is capable of detecting defects such as cracks, voids, inclusions, and other discontinuities. Another method employed is magnetic particle inspection (MPI). This technique is particularly useful for detecting surface and near-surface defects in ferromagnetic materials like steel. A magnetic field is applied to the billet, and iron particles are spread over the surface. If there is a defect, the magnetic field will cause the particles to form visible indications, providing a clear indication of any internal flaws. Liquid penetrant testing (PT) is another widely used method for inspecting steel billets. In this process, a liquid dye is applied to the surface of the billet and allowed to penetrate any surface-breaking defects. After a specified time, excess dye is removed, and a developer is applied. The developer draws out the penetrant from any defects, making them visible under proper lighting conditions. Additionally, radiographic testing (RT) can be employed to detect internal defects in steel billets. This method uses X-rays or gamma rays to capture images of the billet's internal structure. The radiation passes through the billet, and a film or digital detector records the transmitted radiation. Any internal defects will appear as shadows on the image, allowing for their identification. Overall, a combination of these NDT techniques is often used to ensure thorough inspection of steel billets for internal defects. This helps maintain the quality and integrity of the billets, ensuring they meet the required specifications and standards.
Q: Billet heating furnace billet temperature reached, steel will be adhesion
There are a lot of billet heating furnace manufacturers, not just look at the price and go blind choice, billet heating furnace selection properly, will directly affect the day after work is carried out properly, choose cost-effective equipment is the first choice for users, recommended to look at the video consultation.
Q: What is the price range of steel billets?
The price of steel billets can fluctuate due to several factors, including steel quality, market demand, and global steel prices. Typically, the price range for steel billets spans from $300 to $600 per metric ton. Nevertheless, it is crucial to recognize that these prices are susceptible to changes and may vary over time. For the most precise and current pricing details, it is advisable to seek guidance from steel suppliers or industry professionals.
Q: What are the different surface treatments for improved surface cleanliness in steel billets?
There are several surface treatments available for improving surface cleanliness in steel billets. These treatments are designed to remove impurities, oxides, and contaminants from the surface of the billets, resulting in a cleaner and more uniform surface. One common surface treatment is pickling, which involves immersing the steel billets in an acid solution. The acid helps dissolve and remove any oxides or scale present on the surface of the billets. This process not only cleans the surface but also helps improve the adhesion of subsequent coatings or treatments. Another surface treatment option is shot blasting or abrasive blasting. This process involves propelling abrasive materials, such as steel shot or grit, at high speeds onto the surface of the billets. The impact of the abrasive particles removes any contaminants, rust, or scale, resulting in a cleaner surface. Shot blasting is an effective method for preparing the surface of steel billets for further processing or coating. Chemical cleaning is another surface treatment technique used to improve cleanliness in steel billets. This process involves using chemical agents to dissolve and remove contaminants from the surface. Different chemicals, such as alkaline or acid-based solutions, can be employed depending on the type and severity of the contaminants present. Chemical cleaning can be an effective method for removing stubborn contaminants or residues from the surface of the billets. Additionally, mechanical cleaning methods, such as wire brushing or grinding, can be used to improve surface cleanliness. These techniques involve physically removing contaminants or scale from the surface using mechanical means. Wire brushing uses wire bristles to scrub the surface, while grinding involves the use of abrasive materials to remove any imperfections or contaminants. Overall, the choice of surface treatment for improved cleanliness in steel billets depends on several factors, including the specific contaminants present, the desired level of cleanliness, and the intended application of the billets. It is essential to consider the effectiveness, cost, and environmental impact of each treatment method to select the most suitable option.
Q: What is the role of steel billets in the construction of airports and terminals?
Steel billets are essential in the construction of airports and terminals due to their advantageous properties. Essentially, they are semi-finished metal products used as raw materials for manufacturing various steel products. When it comes to airports and terminals, steel billets are mainly used to produce structural steel components like beams, columns, and trusses. The strength and durability of steel billets make them preferred in the construction industry. Steel is well-known for its high tensile strength, enabling it to withstand heavy loads and structural stresses. This makes it ideal for building large and complex structures such as airports and terminals, where safety and reliability are paramount. Moreover, steel billets can be easily shaped and sized to construct different components needed in airports and terminals. These billets are often hot rolled or forged into the desired shapes, ensuring the resulting steel products have the necessary strength and structural integrity. Another advantage of using steel billets in airport and terminal construction is their resistance to adverse environmental conditions. Airports and terminals face harsh weather conditions, including extreme temperatures, moisture, and corrosion. Steel, especially when properly coated or treated, is highly resistant to these factors, ensuring the longevity and structural stability of the facilities. Furthermore, steel billets are relatively cost-effective compared to other construction materials, especially considering their durability and low maintenance requirements. The long lifespan of steel structures reduces the need for frequent repairs or replacements, resulting in cost savings over time. In conclusion, steel billets are crucial in constructing airports and terminals as they provide the required strength, durability, and versatility for large-scale structures. Their ability to withstand heavy loads, resistance to environmental factors, and cost-effectiveness make them an ideal choice for these high-demand facilities.
Q: How do steel billets contribute to the aerospace industry?
Steel billets are an essential component in the aerospace industry as they serve as the raw material for manufacturing various critical parts and components. These billets are used to produce high-strength and lightweight steel alloys that are crucial for aircraft structures, such as fuselages, wings, and landing gears. The superior strength and durability of steel billets allow for the construction of robust and reliable aircraft, ensuring safety and performance in demanding aerospace operations.
Q: Can steel billets be used in the production of electrical appliances?
Yes, steel billets can be used in the production of electrical appliances. Steel billets are semi-finished products that are typically used to produce various steel products, including electrical appliances. The steel billets can be further processed and shaped into different components required for electrical appliances, such as casings, frames, brackets, and other structural parts. The use of steel provides strength, durability, and corrosion resistance, making it suitable for the demanding requirements of electrical appliances. Additionally, steel is a widely available and cost-effective material, making it a preferred choice for manufacturing electrical appliances.
Q: How do steel billets contribute to the chemical industry?
Steel billets are a crucial raw material in the chemical industry as they are used in the production of various chemical equipment and machinery. These billets serve as a foundation for manufacturing components such as pipes, valves, tanks, and reactors, which are essential in carrying out chemical processes. Their strength, durability, and resistance to high temperatures make steel billets an ideal choice for constructing reliable and safe equipment used in the chemical industry.
Q: What are the different methods of steel billet cutting?
There are various techniques for cutting steel billets, each offering unique advantages and applications. Some of the most prevalent methods are as follows: 1. Sawing: Sawing involves the use of a saw blade to cut steel billets. It can be performed either manually or with the aid of a machine. Sawing is a versatile approach that can be applied to billets of various sizes and shapes, although it may not be suitable for thicker billets. 2. Flame cutting: Also known as oxy-fuel cutting, flame cutting entails heating the steel billet to its ignition temperature using a torch, and then introducing oxygen to create a chemical reaction that cuts through the metal. This method is commonly employed for thicker billets and allows for both straight and beveled cuts. 3. Plasma cutting: Plasma cutting employs a high-velocity jet of ionized gas to melt and eliminate the steel. It is a versatile technique suitable for cutting steel billets of various thicknesses, providing high-quality cuts with minimal heat-affected zones. 4. Water jet cutting: This method involves using a high-pressure stream of water mixed with abrasive particles to cut through the steel billet. Water jet cutting is particularly effective for cutting intricate shapes and can deliver precise cuts with minimal heat-affected zones. Furthermore, it is suitable for a wide range of materials, including metals, plastics, and composites. 5. Laser cutting: Laser cutting employs a focused laser beam to melt and vaporize the steel billet, resulting in a narrow cut. This method is highly precise and capable of producing intricate cuts with minimal heat-affected zones. Laser cutting is commonly used for cutting thin to medium thickness billets and is especially favored in industries that require high precision and speed. In conclusion, the methods of steel billet cutting encompass sawing, flame cutting, plasma cutting, water jet cutting, and laser cutting. Each method possesses its own strengths and is appropriate for different applications, depending on factors such as billet thickness, desired precision, and material type.
Q: What is the role of steel billets in the manufacturing of material handling equipment?
Steel billets play a crucial role in the manufacturing of material handling equipment. These billets are essentially semi-finished steel products that are used as the raw material for various manufacturing processes. In the context of material handling equipment, steel billets are typically used in the fabrication of heavy-duty components such as frames, beams, and brackets. These components need to possess high strength, durability, and resistance to wear and tear in order to withstand the demanding conditions that material handling equipment often operates in. The use of steel billets allows manufacturers to create these components with the necessary mechanical properties. The billets are first heated and then shaped through processes like rolling, forging, or extrusion to produce the desired shape and dimensions. This shaping process ensures that the components have the required strength and structural integrity to handle the weight and stress associated with material handling tasks. Furthermore, steel billets offer excellent weldability, which is crucial in the fabrication of material handling equipment. The ability to weld the components together ensures that the equipment can be assembled securely and efficiently. This is especially important for equipment such as cranes, forklifts, and conveyors, where the safe and efficient movement of heavy loads is paramount. Moreover, steel billets provide a cost-effective solution for manufacturing material handling equipment. Steel is widely available, relatively affordable, and can be recycled, making it a sustainable choice. The versatility of steel billets also allows manufacturers to create components of various shapes and sizes, enabling customization to meet specific requirements. Overall, the role of steel billets in the manufacturing of material handling equipment is crucial. They provide the raw material necessary to create strong, durable, and reliable components that can withstand the demanding conditions of material handling tasks. With their excellent mechanical properties and weldability, steel billets contribute to the safe and efficient operation of material handling equipment.

Send your message to us

This is not what you are looking for? Post Buying Request

Similar products

Hot products


Hot Searches

Related keywords