• Prime Q275 160mm Square Alloy Steel Billet System 1
  • Prime Q275 160mm Square Alloy Steel Billet System 2
  • Prime Q275 160mm Square Alloy Steel Billet System 3
  • Prime Q275 160mm Square Alloy Steel Billet System 4
  • Prime Q275 160mm Square Alloy Steel Billet System 5
  • Prime Q275 160mm Square Alloy Steel Billet System 6
Prime Q275 160mm Square Alloy Steel Billet

Prime Q275 160mm Square Alloy Steel Billet

Ref Price:
get latest price
Loading Port:
Shanghai
Payment Terms:
TT OR LC
Min Order Qty:
100 m.t.
Supply Capability:
10000 m.t./month

Add to My Favorites

Follow us:


OKorder Service Pledge

Quality Product, Order Online Tracking, Timely Delivery

OKorder Financial Service

Credit Rating, Credit Services, Credit Purchasing

Structure of Prime Q275 160mm Square Alloy Steel Billet  

 Prime Q275 160mm Square Alloy Steel Billet

Description of Prime Q275 160mm Square Alloy Steel Billet  

1. Prepainted steel coil is coated with organic layer, which provides higher anti-corrosion property and a longer lifespan than that of galvanized or galvalume steel sheets. 

2. The base metals for prepainted steel coil consist of cold rolled, HDGI Steel, electro-galvanized and hot-dip alu-zinc coated steel. The finish coats of prepainted steel coil can be classified into groups as follows: polyester, silicon modified polyesters, polyvinylidene fluoride, high-durability polyester, etc.

3. The production process has evolved from one-coating-and-one-baking to double-coating-and-double-baking, and even three-coating-and-three-baking.

4. The color of the prepainted steel coil has a very wide selection, like orange, cream-colored, dark sky blue, sea blue, bright red, brick red, ivory white, porcelain blue, etc.

5. The prepainted steel coils can also be classified into groups by their surface textures, namely regular prepainted sheets, embossed sheets and printed sheets.

 Prime Q275 160mm Square Alloy Steel Billet

 

Main Feature of Prime Q275 160mm Square Alloy Steel Billet  

They were one of several reasons for the wind to be taken out of the  sails of the recent oil price momentum. Kuwait’s oil minister said that his  country would only commit to a production freeze if all major producers are  involved, including Iran. We also had Goldman telling us that oil markets will  not rebalance at $40/bbl as it throws a lifeline to cash-strapped US  producers.

If it is talk of a production freeze that is behind the rally it  shows how low expectations have fallen. It is in the nature of oil people to  talk the market up. Any bullish crumb is given exaggerated significance and any  port in a storm will do. It is all but fact that the oil market will be tighter  in the second half of this year when seasonal demand shoots up and US production  continues to decline. It was the same picture last year. If OPEC and key  non-OPEC production is frozen that will ensure the daily surplus will fall, but  in all likelihood there will still be a surplus and there is an enormous global  stockbuild to burn off. 

 

Applications of Prime Q275 160mm Square Alloy Steel Billet 

 A. Corrugated design makes it excellent waterproof performance
 B. Materials as prepainted steel sheets, galvanized steel sheets, galvalume (Al-Zn coated sheets) are available to make corrugated sheet.
 C.Those material are durable, anti-corrosion in bad weather for 20-30 years based on it's Zinc(Galvanized) coating or AZ (Galvalume) coating.
 D. Different shape of the sheet make it suitable for any style of buildings.
 E.Easy to install, no need special tools to fix the sheet.
 F.Light weight due to high strength to weight ratio of steel. Light weight means easier handling lower shipping costs, easier installation
 G. Different color is availbe base on the RAL Standard make your building more beautiful.
 H. We will provide the best solutions if you don't have a exact idea of the specification you want for the steel sheet based on your weather conditions, engineering structure, construction budget and so on.

  Prime Q275 160mm Square Alloy Steel Billet

 

Specifications of Prime Q275 160mm Square Alloy Steel Billet 

Product

Billet

Material Grade

SGCC / SGCH  / DX51D+AZ, etc

Thickness

0.6-3.0mm

Width

500-1500mm

Tolerance

Thickness: +/-0.02mm , Width:+/-2mm

Zinc-coating

Z30-150g/m2

Technique

Raw material: Hot rolled steel coil --> Cold rolled_>hot dipped galvalume

Surface

Dried, Chromated, Unoiled

Spangle

Regular spangle , small spangle, zero spangle

ID

508MM 610MM

Coil weight

1-25MT

Export package

Cardboard inner sleeves, Waterproof paper, galvanized steel covered and steel strip packed

  

FAQ of Prime Q275 160mm Square Alloy Steel Billet 

We have organized several common questions for our clients,may help you sincerely: 

1. How Can I Visit There?
  Our company is located in Tianjin City, China, near Beijing. You can fly to Tianjin Airport Directly. All our clients, from home or aboard, are warmly   welcome to visit us!  
2. How Can I Get Some Sample?

Poor trade figures from China punctured commodity optimism yesterday  although they came with warnings that perhaps the numbers were distorted by  Chinese New Year celebrations and we will have to wait for the March figures to  gain a true picture of the state of China’s landing. Exports for February were  -25.4% and imports -13.8% year-on-year.


Q:What are the different surface treatments for improved surface roughness in steel billets?
To enhance the surface roughness of steel billets, there are various surface treatments available. These treatments aim to improve the quality and properties of the billets, making them more suitable for different industrial applications. Some commonly used surface treatments for achieving better surface roughness in steel billets are as follows: 1. Shot Blasting: In shot blasting, high-speed abrasive particles are used to bombard the surface of the steel billets. This treatment effectively removes any contaminants, scale, or unevenness present on the surface, resulting in a smoother and more uniform finish. 2. Acid Pickling: Acid pickling involves immersing the steel billets in an acid solution, typically hydrochloric or sulfuric acid. This chemical treatment dissolves any oxides, rust, or scale present on the surface, leaving behind a clean and smoother surface. 3. Mechanical Grinding: Mechanical grinding employs abrasive wheels or belts to remove material from the surface of the steel billets. This treatment is particularly effective in eliminating deep scratches, pits, or irregularities, resulting in a smoother and more polished surface. 4. Electrochemical Polishing: Electrochemical polishing is an electrochemical process that combines chemicals and electrical current to remove a thin layer of material from the steel billet's surface. This treatment helps eliminate any surface imperfections, resulting in a smoother and more reflective finish. 5. Roller Leveling: Roller leveling involves passing the steel billets through a set of rollers that exert pressure on the surface, flattening and smoothing out any irregularities. This treatment is especially effective in improving the flatness and surface roughness of the billets. 6. Thermal Treatment: Thermal treatment, such as annealing, can also enhance the surface roughness of steel billets. Annealing involves heating the billets to a specific temperature and slowly cooling them to relieve internal stresses and improve the surface finish. It is crucial to consider the specific requirements of the steel billets and the desired surface roughness when selecting a surface treatment. Each treatment has its advantages and limitations, and factors such as the type of steel, dimensions of the billets, desired surface finish, and cost-effectiveness should be taken into account when choosing the most suitable treatment.
Q:What are the potential applications of steel billets in the packaging industry?
Steel billets can be used in the packaging industry for various applications such as manufacturing metal cans, containers, and closures. They provide strength, durability, and resistance to external factors like pressure, impact, and corrosion. Additionally, steel billets can be molded into different shapes and sizes, making them suitable for diverse packaging requirements.
Q:How are steel billets used in the manufacturing of wire rods?
Steel billets are used in the manufacturing of wire rods as they are heated and then rolled into thin, long cylindrical shapes. These billets undergo a series of processes such as hot rolling, cooling, and wire drawing to transform them into wire rods of various sizes. The wire rods are then utilized in various industries for applications like construction, automotive parts, and electrical wiring.
Q:What are the main factors affecting the formability of alloy steel billets?
Several key factors influence the formability of alloy steel billets, which refers to their ability to be shaped or formed without cracking or fracturing. 1. The alloy composition of steel billets plays a significant role in determining their formability. Different alloying elements, such as carbon, manganese, chromium, and nickel, can alter the mechanical properties of the steel. Higher levels of certain elements can improve formability, while excessive amounts can lead to brittleness and reduced formability. 2. The grain size and structure of the steel billets also affect formability. Fine-grained structures have better formability compared to coarser grain sizes. This is because fine grains allow for more uniform deformation and reduce the likelihood of localized strain concentration, which can lead to cracking. 3. The temperature at which the steel billets are processed greatly influences their formability. Generally, higher temperatures enhance the material's ductility and ability to deform without cracking. This is due to the reduction in the material's yield strength and increased plasticity. However, excessively high temperatures can also lead to excessive grain growth and decreased formability. 4. The rate at which the steel billets are deformed, known as the strain rate, is another important factor. Higher strain rates can result in reduced formability, as the material may not have sufficient time to accommodate the deformation before fracture occurs. Controlling the strain rate during forming processes is crucial to ensure optimal formability. 5. The use of lubricants during the forming process can significantly improve the formability of steel billets. Lubricants reduce friction between the material and the forming tools, minimizing the risk of sticking or tearing. They also help dissipate heat generated during deformation, preventing excessive temperature rise that can negatively impact formability. 6. The specific method used to shape the steel billets can also affect formability. Different processes, such as forging, rolling, or extrusion, impose varying levels of strain and stress on the material. Each process has its own limitations and requirements for optimal formability, and selecting the appropriate forming method is crucial to achieve the desired shape without compromising the material's integrity. In conclusion, understanding and controlling the alloy composition, grain size and structure, temperature, strain rate, lubrication, and chosen forming process are essential for achieving the desired shape and avoiding defects or failures during the forming of alloy steel billets.
Q:How are steel billets used in the production of agricultural irrigation systems?
Steel billets are commonly used in the production of agricultural irrigation systems as they serve as the raw material for manufacturing various components such as pipes, fittings, and connectors. These billets are heated, molded, and shaped into the desired form, ensuring the strength and durability needed to withstand the demands of irrigation systems in agricultural settings.
Q:What are the different types of cleaning methods used for steel billets?
Steel billets can be cleaned using several methods, each with specific requirements and desired results. Here are some commonly used cleaning methods for steel billets: 1. Acid cleaning: To eliminate rust, scale, and grease, acid solutions are applied. This method effectively removes tough stains and corrosion, but it necessitates careful handling and proper disposal of acidic waste. 2. Shot blasting: High-speed projectiles are used to impact the surface of steel billets, removing rust, scale, and other impurities and leaving a polished finish. Shot blasting is often employed for large-scale cleaning and can be automated for efficiency. 3. Pickling: Steel billets are submerged in an acid solution, typically hydrochloric or sulfuric acid, to eliminate oxide layers and impurities, resulting in a clean and corrosion-resistant surface. 4. Ultrasonic cleaning: By agitating a cleaning solution with high-frequency sound waves, microscopic bubbles are created, aiding in the removal of dirt, grease, and contaminants from the steel billet's surface. This method is particularly effective for fine particles and hard-to-reach areas. 5. Electrolytic cleaning: A direct electric current is used to attract surface impurities from the steel billets. Immersed in an electrolyte solution, the billets undergo cleaning as the impurities adhere to an electrode. 6. Chemical cleaning: Specialized chemicals are employed to dissolve or react with surface contaminants like rust, oil, or paint. The choice of chemicals depends on the type of contaminant and the desired outcome. Chemical cleaning effectively removes both organic and inorganic substances from steel billets. In conclusion, these various cleaning methods offer diverse approaches to achieve a clean and polished surface for steel billets, ensuring their quality and suitability for further processing or applications.
Q:How do steel billets compare to other types of raw materials in manufacturing?
Steel billets are widely recognized as one of the most versatile and commonly used raw materials in manufacturing industries. When compared to other types of raw materials, steel billets offer several advantages that make them highly desirable. Firstly, steel billets have exceptional strength and durability. This characteristic makes them suitable for a wide range of applications, including construction, automotive, and machinery manufacturing. Steel billets are known for their high tensile strength, which ensures the structural integrity of the final product. Secondly, steel billets have excellent heat resistance properties. This makes them ideal for applications that involve exposure to extreme temperatures, such as in the aerospace and energy sectors. Steel billets can withstand high temperatures without compromising their mechanical properties, ensuring the longevity and reliability of the manufactured products. Additionally, steel billets are highly malleable and can be easily shaped into various forms through processes like rolling, forging, or extrusion. This versatility allows manufacturers to create complex and intricate parts, components, and structures, meeting the diverse needs of different industries. Moreover, steel billets are readily available in large quantities, making them a cost-effective choice for manufacturing. The abundance of steel billets in the market ensures a stable supply chain and helps manufacturers avoid potential disruptions caused by material shortages. Lastly, steel billets are known for their recyclability, making them an environmentally friendly choice. Steel is one of the most recycled materials globally, and the use of steel billets in manufacturing contributes to reducing the environmental impact of waste disposal and conserving natural resources. In summary, steel billets outshine other types of raw materials in manufacturing due to their exceptional strength, heat resistance, malleability, cost-effectiveness, and recyclability. These qualities make steel billets a preferred choice for a wide range of industries, offering reliability, versatility, and sustainability in the manufacturing process.
Q:Billet prices skyrocketing weekend, Southern China steel prices rose?
This week, although steel prices also rose a few days, but since entering November, the price rose a week, a week plummeted, then rebounded sharply, the roller coaster trend, make steel practitioners the feeling of being alone.
Q:What are the common alloys used in the production of steel billets?
The common alloys used in the production of steel billets are carbon steel, stainless steel, and alloy steel.
Q:What are the different surface defects that can occur during steel billet production?
During the production of steel billets, a range of surface defects may occur, which can have a detrimental impact on the final product's quality and performance. Some commonly encountered surface defects include: 1. Scale: Formed on the billet's surface due to exposure to high temperatures during heating or rolling, scale is an oxide layer that can impair surface quality and create complications during subsequent processing stages. 2. Cracks: Improper cooling or excessive stress during rolling can cause cracks to develop on the billet's surface. These cracks have the potential to propagate and result in further structural weaknesses, compromising the integrity of the final product. 3. Pitting: The formation of small cavities or depressions on the billet's surface is referred to as pitting. This defect can arise from chemical reactions or exposure to corrosive environments during production or storage. 4. Decarburization: The loss of carbon from the billet's surface, resulting in a reduced carbon content, is known as decarburization. This phenomenon can occur during heating or prolonged exposure to high temperatures, impacting the mechanical properties of the steel. 5. Lamination: Lamination defects arise when layers or sheets of material separate within the billet, leading to weak points in the structure. Improper casting, cooling, or rolling processes can contribute to the occurrence of this defect. 6. Inclusions: Non-metallic particles or impurities that become trapped within the steel matrix during production are referred to as inclusions. These can consist of oxides, sulfides, or other foreign materials, all of which have the potential to weaken the steel and diminish its overall properties. 7. Slivers: Thin strips or elongated pieces of steel that detach from the billet's surface during rolling are known as slivers. These can result in surface roughness and impact the dimensional accuracy of the final product. 8. Seam: A visible line or seam on the billet's surface is indicative of a seam defect, which occurs when the molten steel fails to properly bond during the casting process. This defect can undermine the steel's strength and compromise its structural integrity. To ensure the production of high-quality steel billets, manufacturers employ various techniques, including meticulous control of heating and cooling processes, regular inspection and monitoring, and the utilization of advanced technologies to identify and rectify these surface defects.

1. Manufacturer Overview

Location
Year Established
Annual Output Value
Main Markets
Company Certifications

2. Manufacturer Certificates

a) Certification Name  
Range  
Reference  
Validity Period  

3. Manufacturer Capability

a)Trade Capacity  
Nearest Port
Export Percentage
No.of Employees in Trade Department
Language Spoken:
b)Factory Information  
Factory Size:
No. of Production Lines
Contract Manufacturing
Product Price Range

Send your message to us

This is not what you are looking for? Post Buying Request

Similar products

Hot products


Hot Searches

Related keywords