Prime hot rolled steel square billet mill price
- Loading Port:
- China main port
- Payment Terms:
- TT OR LC
- Min Order Qty:
- 1000 m.t.
- Supply Capability:
- 17145 m.t./month
OKorder Service Pledge
OKorder Financial Service
You Might Also Like
Specification
Steel billets have distinct characteristics as compared with already furnished steel bars and products.
Billets have a specific grain structure, which enables the metal to be processed more intricately. Steel
billets are also known for their malleability and ductility, especially when exposed to varying temperatures
during shaping and molding.
The billet is mainly divided into two kinds from the shape:
Slab: cross section width and height of the ratio of the larger, mainly used for rolling plate.
Size :100mm to 165mm
Length:6~12meters
Grade: Q195/Q215/Q235/Q275
Qaulity:own factory, stable quality
Tolerance: Strictly according to the G/B and JIS standard
Tolerance: Strictly according to the G/B and JIS standard
Gade:
Standard | C(%) | Mn(%) | S(%) | P(%) | Si(%) |
Q195 | ≤0.12 | ≤0.50 | ≤0.040 | ≤0.035 | ≤0.30 |
Q235 | ≤0.20 | ≤1.40 | ≤0.045 | ≤0.045 | ≤0.35 |
Q275 | ≤0.22 | ≤1.50 | ≤0.045 | ≤0.045 | ≤0.35 |
20MnSi | 0.17-0.25 | 1.2-1.6 | ≤ 0.050 | ≤ 0.050 | 0.40-0.80 |
3SP | 0.14-0.22 | 0.40-0.85 | ≤ 0.050 | ≤ 0.040 | 0.05-0.15 |
5SP | 0.28-0.37 | 0.50-1.00 | ≤ 0.050 | ≤ 0.040 | 0.15-0.30 |
Our service :
We have a plant and professional team to provide our best service, from the start of production until the
loading into the vessel, we have a complete quality follow up procedure, to assure our products arrives to the customer with satisfaction. Welcome new and old customers
to contact us for future business relationships! We will give you a surpise price.
Packing :
Within 30 days
1.Standard export package
2.In bundles with steel strips
3.As the requirements of the customers
FAQ:
Q: What is payment terms?
A: FOB 30% T/T IN ADVANCE AS DEPOSIT AND 70% T/T BEFORE SHIPMENT
CIF and CFR 30% T/T IN ADVANCE AS DEPOSIT AND 70% T/T AS THE COPY OF B/L OR L/C AT SIGHT
Q:How to guarantee the quality of the products?
A:We have established the international advanced quality management system,every link from raw material
to final product we have strict quality test;We resolutely put an end to unqualified products flowing into the market.
At the same time, we will provide necessary follow-up service assurance.
Q:How long can we receive the product after purchase?
A :In the purchase of product within three working days, We will arrange the factory delivery as soon as possible.
The pecific time of receiving is related to the state and position of customers.
- Q:What are the main factors affecting the surface quality of steel billets?
- The main factors affecting the surface quality of steel billets include the cleanliness of the raw materials used in the production process, the temperature and composition of the molten steel, the cooling rate during solidification, the presence of impurities or defects, and the handling and storage conditions during transportation and storage.
- Q:What are the different types of steel billet rolling mill defects?
- Some common types of steel billet rolling mill defects include surface cracks, internal cracks, surface defects such as pits or scratches, shape defects such as bowing or twisting, and dimensional defects such as thickness variations or width deviations.
- Q:What are the main factors that determine the sustainability of steel billets production?
- Several key factors determine the sustainability of steel billets production. Firstly, the choice of raw material source plays a crucial role. Utilizing recycled scrap metal as the primary raw material reduces the need for new mining and extraction of iron ore, thus minimizing the environmental impact associated with resource extraction. Secondly, sustainability is influenced by energy consumption during the production process. Given that steel production is energy-intensive, the type of energy sources utilized greatly impacts sustainability. The adoption of renewable energy, such as solar or wind power, can significantly reduce the carbon footprint of steel billets production. Thirdly, the efficiency of production processes and technologies employed is vital for sustainability. Modern technologies, like electric arc furnaces, offer higher energy efficiency and emit fewer greenhouse gases compared to traditional blast furnaces. Additionally, implementing waste heat recovery systems and optimizing material usage further enhances the sustainability of steel billets production. Proper management of by-products and waste generated during production is another crucial factor. Ensuring appropriate handling, treatment, and disposal of by-products and waste materials, such as slag and dust, is essential to minimize environmental pollution and ensure sustainability. Furthermore, the overall sustainability of steel billets production is influenced by the adoption of responsible and ethical practices throughout the supply chain. This includes upholding labor rights, maintaining health and safety standards, and engaging with the community. Lastly, regulatory frameworks and government policies have a significant impact on sustainability. Stringent environmental regulations, support for clean technologies, and incentives for sustainable practices can encourage the industry to adopt more environmentally friendly production methods. In conclusion, the sustainability of steel billets production is determined by factors such as the raw material source, energy consumption, production processes, waste management, ethical practices, and regulatory frameworks. By addressing these factors, the steel industry can strive towards more sustainable and environmentally friendly production practices.
- Q:How are steel billets used in the production of gears?
- Steel billets are used in the production of gears as the raw material from which the gears are manufactured. Billets are essentially semi-finished steel products that have a square or rectangular cross-section. They are heated and then hot-rolled into shape to form the desired gear. The first step in using steel billets for gear production is to select the appropriate grade of steel. The steel should have specific mechanical properties, such as high strength, toughness, and wear resistance, to ensure the gears can withstand the demanding conditions they will be subjected to during operation. Once the steel billets are selected, they are heated to a high temperature to make them malleable and easier to shape. This process, known as hot working, allows the steel to be deformed without cracking or fracturing. The billets are then passed through a series of rollers to form the desired shape and dimensions of the gear. After the initial shaping process, the gears may undergo further machining operations to refine their shape and improve their precision. This may include processes such as milling, grinding, or hobbing to remove excess material and create the final gear profile. These machining operations ensure that the gears meet the required tolerances and have smooth surfaces for optimal performance. Once the gears are machined to the desired specifications, they may undergo heat treatment processes such as quenching and tempering to enhance their mechanical properties. This helps to increase the hardness and strength of the gears, making them more durable and resistant to wear. Overall, steel billets play a crucial role in the production of gears as they serve as the starting material for the manufacturing process. Through heating, shaping, machining, and heat treatment processes, steel billets are transformed into high-quality gears that are strong, durable, and precisely engineered to meet the specific requirements of various mechanical applications.
- Q:What are the different methods of surface cleaning for steel billets?
- Some of the different methods of surface cleaning for steel billets include abrasive blasting, acid pickling, mechanical cleaning, and electrochemical cleaning.
- Q:What are the main factors affecting the toughness of steel billets?
- There are several main factors that can affect the toughness of steel billets. 1. Composition: The chemical composition of the steel, including the presence of certain elements such as carbon, manganese, and silicon, can significantly impact its toughness. For example, higher carbon content tends to increase hardness but decrease toughness, while the addition of alloying elements like nickel or chromium can improve both strength and toughness. 2. Heat treatment: The heat treatment process, including the rate of cooling and the temperature at which it is performed, can have a significant effect on the toughness of steel. Quenching and tempering are common heat treatment techniques used to enhance the toughness of steel by controlling the microstructure and reducing the presence of brittle phases. 3. Microstructure: The microstructure of steel, which is determined by factors such as cooling rate, grain size, and phase distribution, can greatly influence its toughness. Fine-grained structures tend to exhibit better toughness compared to coarse-grained ones, as smaller grains can inhibit crack propagation. 4. Impurities and inclusions: The presence of impurities and inclusions in steel can negatively impact its toughness. These impurities can act as stress concentrators, leading to localized failure and reduced overall toughness. Therefore, the steelmaking process needs to ensure proper purification and removal of impurities. 5. Manufacturing processes: Various manufacturing processes, such as rolling or forging, can influence the toughness of steel billets. These processes can induce residual stresses and introduce defects that can affect the material's overall toughness. Proper control and optimization of these processes can help enhance the toughness of steel billets. 6. Service conditions: The specific application and service conditions of the steel billets also play a role in determining its toughness requirements. Factors such as temperature, stress levels, and exposure to corrosive environments can impact the material's toughness performance. Understanding and accounting for these conditions is crucial in selecting the appropriate steel grade and ensuring long-term durability. In summary, the main factors affecting the toughness of steel billets include composition, heat treatment, microstructure, impurities, manufacturing processes, and service conditions. By carefully considering and optimizing these factors, manufacturers can produce steel billets with the desired toughness properties for various applications.
- Q:What are the different types of cutting processes used for shaping steel billets?
- Steel billets can be shaped using various cutting processes. Some of these methods include: 1. Bandsaw cutting, a popular technique that employs a continuous band of toothed metal blade to cut through the billet. Bandsaws are highly regarded for their quick and accurate cutting of thick steel sections. 2. Abrasive cutting, which involves using an abrasive wheel or disc to slice through the billet. This method is versatile, being suitable for smaller billets and for creating intricate shapes and contours. It is known for its ability to produce precise and smooth cuts. 3. Plasma cutting, a thermal cutting process that employs a high-velocity jet of ionized gas to melt and eliminate the steel from the billet. This technique is often employed for thick steel sections and intricate shapes. It boasts high speed and the ability to produce clean cuts. 4. Waterjet cutting, a process that employs a high-pressure jet of water to cut through the steel billet. In some cases, abrasive particles may be introduced to enhance the cutting ability. Waterjet cutting is renowned for its capability to cut through thick steel sections without causing heat-affected zones or distortion. 5. Laser cutting, which utilizes a high-powered laser beam guided by computer controls to melt and vaporize the steel billet. This method is known for its precision and the ability to cut intricate shapes with minimal distortion. These examples represent only a few of the cutting processes available for shaping steel billets. Each technique has its own set of advantages and is selected based on factors such as billet size, desired shape, and required accuracy.
- Q:How are steel billets used in the manufacturing of pipeline systems?
- The manufacturing process of pipeline systems relies heavily on steel billets. These billets are essential as they serve as the primary raw material for shaping and forming various pipeline components, including pipes, fittings, and connectors. To initiate the manufacturing process, the steel billets undergo heating to a specific temperature, making them malleable and easier to manipulate. Subsequently, they pass through a series of rolling mills, gradually taking on the desired form and size. This hot rolling process entails applying high pressure to elongate and shape the billets into long cylindrical pipes. Once the initial shaping is complete, the pipes undergo additional processes, such as heat treatment, cutting, and welding, to ensure their strength, durability, and dimensional accuracy. The steel billets used in this process are of utmost importance as they provide the necessary raw material for producing high-quality pipes that can withstand the demanding conditions of pipeline systems. Furthermore, steel billets also play a crucial role in the manufacturing of various pipeline fittings and connectors. By employing techniques like forging, machining, or casting, these billets are shaped and formed into fittings like elbows, tees, reducers, and flanges. These fittings are essential for connecting and joining pipes together, facilitating the proper flow and distribution of fluids or gases within the pipeline system. In conclusion, steel billets are indispensable in the manufacturing of pipeline systems. They serve as the raw material for pipes, fittings, and connectors, guaranteeing the production of durable and high-quality components. Through processes such as hot rolling, heat treatment, cutting, and welding, these billets meet the stringent requirements of pipeline systems.
- Q:What are the main factors affecting the formability of steel billets?
- The main factors affecting the formability of steel billets are the composition and microstructure of the steel, the temperature at which the forming process takes place, and the mechanical properties of the steel, such as its yield strength and ductility.
- Q:What is the role of steel billets in the shipbuilding industry?
- The shipbuilding industry relies heavily on steel billets as they are the primary material used to build the structural components of ships. These billets, which are semi-finished steel products, are made by casting molten steel into rectangular shapes that can be further processed into various shipbuilding parts. Using steel billets in shipbuilding offers several advantages. Firstly, they are known for their high strength and durability, making them ideal for withstanding the intense stress and harsh conditions ships face, such as waves, corrosion, and extreme temperatures. This ensures the structural integrity and longevity of the vessel. In addition, steel billets have excellent weldability, which is crucial in shipbuilding as ships have numerous welded joints. The ease and reliability of welding steel billets allow for efficient and cost-effective construction methods, reducing both time and labor required. Furthermore, steel billets provide versatility in ship design. They can be easily shaped and fabricated into different forms and sizes, enabling shipbuilders to create complex structures that optimize space utilization and enhance functionality. This flexibility in design allows for the construction of various types of ships, from cargo vessels and tankers to cruise ships and naval vessels. Moreover, steel billets have excellent resistance to corrosion, which is essential for ships constantly operating in corrosive marine environments. The high-quality steel used in billets protects against rust and deterioration caused by seawater, ensuring the safety and longevity of the vessel. Overall, steel billets are crucial in shipbuilding as they provide the necessary strength, weldability, versatility, and corrosion resistance required for constructing durable and seaworthy ships. Their use as the primary raw material allows for the creation of reliable and efficient vessels capable of withstanding the challenging conditions of the maritime environment.
1. Manufacturer Overview |
|
---|---|
Location | |
Year Established | |
Annual Output Value | |
Main Markets | |
Company Certifications |
2. Manufacturer Certificates |
|
---|---|
a) Certification Name | |
Range | |
Reference | |
Validity Period |
3. Manufacturer Capability |
|
---|---|
a)Trade Capacity | |
Nearest Port | |
Export Percentage | |
No.of Employees in Trade Department | |
Language Spoken: | |
b)Factory Information | |
Factory Size: | |
No. of Production Lines | |
Contract Manufacturing | |
Product Price Range |
Send your message to us
Prime hot rolled steel square billet mill price
- Loading Port:
- China main port
- Payment Terms:
- TT OR LC
- Min Order Qty:
- 1000 m.t.
- Supply Capability:
- 17145 m.t./month
OKorder Service Pledge
OKorder Financial Service
Similar products
Hot products
Hot Searches
Related keywords