• Monolithic Refractories for Iron and Steel Industry - Painting Material for Tundish System 1
  • Monolithic Refractories for Iron and Steel Industry - Painting Material for Tundish System 2
  • Monolithic Refractories for Iron and Steel Industry - Painting Material for Tundish System 3
Monolithic Refractories for Iron and Steel Industry - Painting Material for Tundish

Monolithic Refractories for Iron and Steel Industry - Painting Material for Tundish

Ref Price:
$553.11 - 676.03 / m.t. get latest price
Loading Port:
China Main Port
Payment Terms:
TT or L/C
Min Order Qty:
2 Mt m.t.
Supply Capability:
5000 Tons Per Month m.t./month

Add to My Favorites

Follow us:


OKorder Service Pledge

Quality Product, Order Online Tracking, Timely Delivery

OKorder Financial Service

Credit Rating, Credit Services, Credit Purchasing

General Information of Painting Material for Tundish
Made as per international standards, ALRE painting material for tundish is known for its excellent corrosion resistance, long operating life and high refractoriness. Further, these can be provided in different specifications as required by the clients.

 

Technical data of Painting Material for Tundish

Item

Painting material for tundish

Al2O3

%

MgO

%

60-85

CaO

%

SiO2

%

SiO2+ Fe2O3+ Al2O3

%

Bulk density ≥

g/cm3

2.0

C.C.S. (MPa) ≥

110×24hrs

5.0

1500×3hrs

8.0

M.O.R.(MPa) ≥

110×24hrs

1500×3hrs

Refractoriness () ≥

Grain size (mm) ≤

3

Permanent linear change

1500×2hrs

1500×3hrs

-2.5~-1.0

Life time (hr)

10-40

 

Production line and Packing of Painting Material for Tundish

 

Feature of Painting Material for Tundish
Easy execution and mending
Excellent abrasive resistance performance
Excellent corrosion and scouring resistance of iron steel


Application of Painting Material for Tundish
ALRE painting material for tundish could be used widely for ladel and tundish of stell and iron industry. 

 

Q: In iron and steel industry, the main raw materials for blast furnace ironmaking are iron ore, coke and limestone. What's the use of limestone here?
Calcium oxide absorbs sulfur dioxide and prevents it from polluting the air.
Q: What are the advancements in monolithic refractory technology for the iron and steel industry?
There have been significant advancements in monolithic refractory technology for the iron and steel industry in recent years. Monolithic refractories are a type of heat-resistant material used to line the walls and floors of high-temperature industrial processes, such as those involved in iron and steel production. One of the key advancements in monolithic refractory technology is the development of new and improved materials. Traditional refractory materials, such as firebricks, have been replaced by more advanced materials like castables and gunning mixes. These new materials offer superior performance in terms of thermal conductivity, thermal shock resistance, and erosion resistance. They can withstand higher temperatures and can be applied more efficiently, resulting in improved process efficiency and reduced downtime for maintenance. Another important advancement is the use of advanced additives in monolithic refractories. These additives can enhance the properties of the refractory material, such as increasing its resistance to corrosion and erosion. They can also improve the bond between the refractory and the substrate, ensuring a longer lifespan for the lining. Furthermore, advancements in monolithic refractory technology have led to the development of innovative installation techniques. For instance, shotcreting, a process that involves spraying the refractory material onto the surface, has gained popularity due to its efficiency and ability to provide a uniform lining. Similarly, the use of gunning machines, which pump the refractory material at high velocity, has improved the speed and accuracy of installation. Moreover, there have been advancements in the design of monolithic refractories specifically tailored for different applications in the iron and steel industry. Refractories for blast furnaces, ladles, tundishes, and other critical equipment have been optimized to withstand the unique challenges and harsh conditions of these processes. The development of specialized monolithic refractories has resulted in increased productivity, reduced energy consumption, and improved product quality in the iron and steel industry. In conclusion, advancements in monolithic refractory technology for the iron and steel industry have brought about improved materials, advanced additives, innovative installation techniques, and specialized designs. These advancements have significantly enhanced the performance, durability, and efficiency of refractory linings in high-temperature industrial processes. As a result, the iron and steel industry can benefit from increased productivity, reduced downtime, and improved product quality.
Q: How do monolithic refractories withstand the mechanical impacts in furnace door applications?
Monolithic refractories withstand mechanical impacts in furnace door applications due to their high strength and resistance to thermal shock. These refractories are composed of dense and uniform materials, such as castables or plastics, which provide excellent structural integrity and the ability to withstand heavy loads and vibrations. Additionally, they have low porosity and high thermal conductivity, allowing them to dissipate heat efficiently and reduce the risk of cracking or spalling under mechanical stress.
Q: What are monolithic refractories and how are they different from other refractory materials?
Monolithic refractories, unlike bricks or tiles, are refractory materials that are not pre-formed into specific shapes or sizes. Instead, they are composed of a mixture of aggregates, binders, and additives, which are then installed and cured to create a solid and dense structure. One notable difference between monolithic refractories and other refractory materials is their versatility and ease of installation. While traditional bricks or tiles require skilled labor and careful assembly, monolithic refractories can be poured, sprayed, or gunned into place, allowing for a faster and more efficient installation process. This makes them particularly suitable for complex shapes or hard-to-reach areas. Another distinction lies in the physical properties of monolithic refractories. Unlike bricks and tiles, which are known for their mechanical strength and resistance to thermal shock, monolithic refractories can be customized to exhibit a wide range of properties. Depending on the specific application requirements, they can be engineered to have excellent thermal insulation, superior corrosion resistance, or enhanced abrasion resistance. This adaptability makes monolithic refractories suitable for various industries, including steel, cement, glass, and petrochemical. Furthermore, monolithic refractories have the advantage of being able to expand and contract with temperature changes, unlike rigid brick structures. This thermal flexibility helps prevent cracking and damage caused by thermal cycling, thus prolonging the lifespan of the refractory lining. Additionally, monolithic refractories offer better refractory integrity and reduced joint failure since they do not have seams or weak points that are susceptible to thermal stresses. In conclusion, monolithic refractories are a versatile and convenient type of refractory material that can be tailored to meet specific application requirements. Their easy installation, thermal flexibility, and customizable properties distinguish them from other refractory materials like bricks or tiles.
Q: How do monolithic refractories withstand high temperatures in iron and steel processing?
Monolithic refractories are able to withstand high temperatures in iron and steel processing due to their unique composition and properties. These refractories are primarily made of a single, continuous material, making them highly resistant to thermal shock and mechanical stress. Additionally, they have a high melting point and excellent heat insulation properties, allowing them to maintain their integrity even in extreme heat conditions. The refractories also possess good chemical stability, preventing reactions with molten metals and other corrosive substances often encountered in iron and steel processing facilities. Overall, the combination of these features enables monolithic refractories to endure the intense temperatures and harsh conditions involved in iron and steel processing.
Q: What are the key properties of patching mixes used for monolithic refractory repairs?
The key properties of patching mixes used for monolithic refractory repairs include high thermal conductivity, excellent adhesion, good workability, high strength, resistance to thermal shock, and suitable setting and drying times. These properties ensure effective repairs and long-lasting performance in high-temperature applications.
Q: What are the key factors affecting the installation and curing of monolithic refractories?
There are several key factors that affect the installation and curing of monolithic refractories: 1. Material selection: The choice of monolithic refractory material is crucial as it determines the installation and curing process. Different materials have different installation and curing requirements, so it is important to select the right material for the specific application. 2. Surface preparation: Proper surface preparation is essential for the successful installation and curing of monolithic refractories. The surface should be clean, free from contaminants, and properly roughened to ensure good adhesion of the refractory material. 3. Mixing and proportioning: The mixing and proportioning of the refractory material play a significant role in its installation and curing. It is important to follow the manufacturer's instructions for mixing ratios and ensure thorough mixing to achieve a homogeneous mixture. 4. Application technique: The technique used to apply the monolithic refractory material can greatly impact its installation and curing. Proper application techniques, such as gunning, casting, or ramming, should be employed to ensure uniformity and proper bonding with the substrate. 5. Temperature control: Temperature control during the installation and curing process is critical for the development of desired properties in the monolithic refractory. The curing process should be carried out at the recommended temperature, and any sudden temperature changes should be avoided to prevent thermal stresses. 6. Moisture content: The moisture content of the refractory material and the surrounding environment can affect its installation and curing. Excessive moisture can lead to shrinkage, cracking, or poor bonding, while insufficient moisture can hinder proper curing. It is important to maintain the optimum moisture content for the specific refractory material. 7. Curing time: The curing time required for monolithic refractories varies depending on the material and application. It is crucial to follow the recommended curing time to allow for proper strength development and dimensional stability. 8. Environmental conditions: Environmental factors, such as humidity, temperature, and air circulation, can influence the installation and curing of monolithic refractories. Suitable environmental conditions should be maintained to facilitate proper drying and curing. Overall, understanding and addressing these key factors can ensure the successful installation and curing of monolithic refractories, leading to improved performance and longevity of the refractory lining.
Q: How can the lifespan of monolithic refractories be extended in the iron and steel industry?
Various measures can be taken to extend the lifespan of monolithic refractories in the iron and steel industry. Firstly, it is crucial to ensure proper installation and maintenance of the refractories. This includes ensuring correct shape and size for the specific application, as well as using appropriate installation techniques and materials. Regular inspections should be carried out to identify any signs of wear or damage, and immediate repairs or replacements should be made to prevent further deterioration. To significantly prolong the lifespan of monolithic refractories, effective heat management practices should be implemented. This involves monitoring and controlling temperature gradients within the refractory lining to prevent thermal shock and excessive thermal cycling. Adequate insulation and cooling systems should also be in place to maintain a stable and controlled environment. Proper handling and operation of equipment and processes also contribute to extending the refractory lifespan. Avoiding sudden temperature changes, minimizing mechanical stress and impact, and employing appropriate operating procedures can help reduce wear and tear on the refractories. Utilizing advanced refractory materials and technologies can further enhance the lifespan of monolithic refractories. High-performance and specialized refractories, such as advanced ceramics or specialized coatings, provide increased resistance to thermal and chemical degradation, ultimately extending their lifespan. Lastly, continuous research and development efforts should be undertaken to explore innovative solutions for refractory longevity in the iron and steel industry. Collaborating with suppliers, experts, and industry partners can help identify and implement new technologies and techniques that improve the durability and performance of monolithic refractories. In summary, extending the lifespan of monolithic refractories in the iron and steel industry requires proper installation and maintenance, effective heat management, careful handling and operation, utilization of advanced materials, and ongoing research and development. By implementing these strategies, the iron and steel industry can optimize refractory performance, reduce downtime, and minimize costs associated with frequent replacements.
Q: What are the challenges in repairing and maintaining monolithic refractories?
Repairing and maintaining monolithic refractories poses several challenges. One primary challenge lies in the intricate composition of the materials used in these refractories. They typically consist of various components, including aggregates, binders, and additives. The selection and proportioning of these components significantly affect the refractory's performance and durability, making it difficult to determine the most appropriate repair or maintenance method. Another obstacle arises from the extremely high temperatures at which monolithic refractories operate. These materials are specifically designed to withstand extreme heat, ranging from several hundred to several thousand degrees Celsius. Repairing or maintaining them under such conditions necessitates specialized equipment and techniques to ensure worker safety and repair integrity. Moreover, monolithic refractories often face harsh environments, such as corrosive gases, chemical reactions, and mechanical stresses. These factors can lead to gradual degradation and damage, requiring regular inspections and maintenance. However, identifying and addressing these issues promptly can be challenging as the damage may not always be visible or easily accessible. Furthermore, monolithic refractories are commonly employed in complex industrial processes like steelmaking, cement manufacturing, and petrochemical production. These processes typically involve continuous operation, limiting the available time for repairs and maintenance. Finding suitable windows of opportunity for maintenance and coordinating process shutdowns can pose logistical challenges. Lastly, the cost of repairing and maintaining monolithic refractories can be substantial. The materials used in these refractories tend to be expensive, and the labor and equipment required for repairs and maintenance can accumulate costs. Striking a balance between repair expenses, productivity maintenance, and extending the refractories' service life can challenge plant operators and maintenance teams. In conclusion, the challenges associated with repairing and maintaining monolithic refractories arise from the complex materials used, the high temperatures involved, the harsh operating environments, the complexity of industrial processes, and the cost considerations. Overcoming these challenges necessitates expertise, meticulous planning, and effective coordination to ensure the longevity and optimal performance of monolithic refractories.
Q: How do monolithic refractories improve the efficiency of ladle and tundish drying furnaces?
Monolithic refractories improve the efficiency of ladle and tundish drying furnaces by providing excellent thermal insulation, high resistance to thermal shock, and superior strength. These properties ensure minimal heat loss during the drying process, allowing for faster and more efficient heating. Additionally, monolithic refractories offer better resistance to erosion and corrosion, prolonging the lifespan of the furnaces and reducing maintenance requirements. Overall, the use of monolithic refractories enhances the performance and productivity of ladle and tundish drying furnaces.
We are an industrial enterprise of refractories integrating the scientific research, design, production and engineering service. With first-class quality of products, high-efficient and prompt after-sale service, our products are not only well sold in many domestic large steel enterprises and coking enterprises, but also widely exported to more than 23 countries and regions.

1. Manufacturer Overview

Location Henan, China
Year Established 2007
Annual Output Value Above US$ 200 Million
Main Markets North America;Asia;Western Europe;Africa;Russia;Middle East
Company Certifications ISO 9001:2008

2. Manufacturer Certificates

a) Certification Name  
Range  
Reference  
Validity Period  

3. Manufacturer Capability

a) Trade Capacity
Nearest Port Tianjin
Export Percentage 20% - 30%
No.of Employees in Trade Department 10-20 People
Language Spoken: English; Chinese
b) Factory Information
Factory Size: Above 150,000 square meters
No. of Production Lines Above 10
Contract Manufacturing Installation guide, OEM Service Offered
Product Price Range High; Average

Send your message to us

This is not what you are looking for? Post Buying Request

Similar products

Hot products


Hot Searches

Related keywords