Castable Refractory Cement For Fireplace and Industrial Furnace
- Loading Port:
- China main port
- Payment Terms:
- TT OR LC
- Min Order Qty:
- 1000 kg
- Supply Capability:
- 3000000 kg/month
OKorder Service Pledge
OKorder Financial Service
You Might Also Like
Castable Refractory Cement For Fireplace and Industrial Furnace
Product Description:
Gunning castable is manufactured according to international standards. The product is famous for its excellent abrasion resistance and low thermal conductivity. Further, these can be provided in different specifications as required by the clients. The gunning castables are used high purity raw materials and additives as the main material, and made of under superfine powder adding technology.
Product Advantages:
The material has excellent structural stability and air tightness, and has high physical and chemical properties, also has a fine working ability.They should be used with the same material products.
Product Applications:
For feature of gunning castable, they have excellent abrasion resistance, thermal shock resistance, high-temperature resistance, anti-corrode and have high intensity.
Designed for refractory lining of blast furnace iron and slag runners, skimmers and soon
They can be used in troughs of small and mid size BFs and in all positions of the troughs where fast tapping is required.
Product Specifications:
FAQ:
1. How you can control your quality?
For each production processing, we have complete QC system for the chemical composition
and Physical properties. After production, all the goods will be tested, and the quality certificate
will be shipped along with goods.
2. What's your delivery time?
It usually needs about 20days- 45 days after receiving the deposit.
3. Do you provide free samples?
Yes, we can provide a free sample for testing, If we have sample in stock,
The quantity based on the material type, The buyer should bear all the shipping costs.
4. What's your payment terms?
We can accept 30% deposit, 70% balance before shipment for ordrs over $ 2000.
5. Can we visit your Company?
Yes, certainly. You are very welcome to China and we will be honored to have a customer and friend.
Product Picture:
- Q:How do monolithic refractories contribute to the overall productivity of iron and steel plants?
- Monolithic refractories play a crucial role in enhancing the overall productivity of iron and steel plants. These refractories are characterized by their ability to be shaped and installed without the need for joints or mortar, making them highly versatile and efficient. One major contribution of monolithic refractories to the productivity of iron and steel plants is their ability to withstand high temperatures. These refractories are designed to have excellent thermal shock resistance, meaning they can withstand rapid changes in temperature without cracking or breaking. This allows them to be used in various high-temperature applications such as blast furnaces, converters, and ladles. By using monolithic refractories in these critical areas, iron and steel plants can operate at higher temperatures, leading to increased production rates. The refractories provide effective insulation, reducing heat losses and improving energy efficiency. This results in cost savings and higher output for the plant. Furthermore, monolithic refractories are known for their excellent resistance to chemical attacks from molten metals and slags. They can withstand the corrosive effects of molten iron, steel, and other alloys, protecting the underlying structures and extending their lifespan. This reduces downtime for maintenance and repairs, allowing for continuous operation and higher productivity. Moreover, monolithic refractories offer easy installation and maintenance, which further contributes to productivity. Unlike traditional refractories that require time-consuming bricklaying and jointing, monolithic refractories can be sprayed, troweled, or pumped into place, saving both time and labor costs. Additionally, their ability to be easily repaired or replaced without major disruptions to the production processes ensures minimal downtime, maximizing overall plant productivity. In summary, monolithic refractories enhance the productivity of iron and steel plants by withstanding high temperatures, providing insulation and energy efficiency, resisting chemical attacks, and offering easy installation and maintenance. Their ability to perform under extreme conditions and their cost-effective nature make them an essential component in the iron and steel industry, contributing to increased output and profitability.
- Q:What are the key properties of shotcrete mixes used for monolithic refractory applications?
- The key characteristics of shotcrete mixes utilized in monolithic refractory applications are as follows: 1. Strong: Shotcrete mixes for monolithic refractory applications must possess a high level of compressive strength in order to withstand the intense temperatures and stresses endured in refractory environments. This ensures that the shotcrete lining remains intact and provides effective insulation and protection. 2. Minimal Porosity: Shotcrete mixes should exhibit low porosity to minimize the infiltration of gases and liquids into the refractory lining. This is crucial in preventing corrosion and degradation of the lining, ensuring its long-lasting durability. 3. Thermal Stability: Shotcrete mixes must demonstrate exceptional thermal stability to endure the extreme heat conditions encountered in refractory applications. They should also possess low thermal conductivity to effectively insulate the structure and prevent heat transfer, thus preserving the integrity of the refractory lining and optimizing its performance. 4. Resistant to Wear and Tear: Shotcrete mixes used in monolithic refractory applications should have high resistance to abrasion, enabling them to withstand the mechanical wear caused by the movement of materials and particles. This property ensures that the refractory lining remains intact and provides effective protection against erosion. 5. Resistant to Chemicals: Shotcrete mixes should be resistant to chemical attacks from molten metals, slag, and other corrosive substances commonly found in refractory applications. This resistance helps to maintain the integrity of the lining and extend its service life. 6. Easy to Work with: Shotcrete mixes should exhibit good workability to facilitate easy placement and application. This allows for efficient and precise installation of the refractory lining, ensuring the desired thickness and coverage. In summary, shotcrete mixes utilized in monolithic refractory applications must possess a combination of high strength, low porosity, thermal stability, abrasion resistance, chemical resistance, and workability in order to guarantee optimal performance and durability in refractory environments.
- Q:What are the specific requirements of monolithic refractories for continuous casting applications?
- The specific requirements of monolithic refractories for continuous casting applications include high thermal shock resistance, excellent erosion resistance, good thermal conductivity, low shrinkage, and high refractoriness. These refractories must also have good flowability and workability to ensure easy installation and maintenance. Additionally, they should have a high degree of chemical stability to withstand the harsh conditions of molten metal and slag in continuous casting processes.
- Q:What are the main factors affecting the thermal expansion of monolithic refractories?
- The main factors affecting the thermal expansion of monolithic refractories include the chemical composition of the refractory material, the temperature at which it is exposed, and the rate at which it is heated or cooled. Other factors such as the presence of impurities, the porosity of the material, and the type of bonding agents used can also influence the thermal expansion behavior of monolithic refractories.
- Q:How do monolithic refractories withstand the mechanical impacts in furnace door applications?
- Monolithic refractories are designed to withstand mechanical impacts in furnace door applications due to their unique properties and composition. These refractories are made from a single piece of material, which eliminates the need for joints or seams that are prone to cracking or failure under mechanical stress. One important characteristic of monolithic refractories is their high density, which provides them with excellent strength and resistance to mechanical impacts. Their dense structure makes them less susceptible to cracking or breaking when subjected to sudden or repeated impacts, such as when a furnace door is opened or closed. In addition to their density, monolithic refractories also possess high tensile strength and toughness. These properties allow them to absorb and distribute the energy from mechanical impacts, reducing the risk of damage or failure. This is particularly important in furnace door applications, where the refractories are constantly exposed to the stress of opening and closing the door. Furthermore, monolithic refractories often contain additives or bonding agents that enhance their mechanical properties. These additives can include fibers or aggregates that reinforce the structure and improve resistance to impacts. They can also improve the refractory's ability to withstand thermal cycling, which is common in furnace door applications. Overall, monolithic refractories are specifically engineered to withstand the mechanical impacts encountered in furnace door applications. Their dense, high-strength composition, combined with the use of additives and bonding agents, ensures their durability and longevity in these demanding environments.
- Q:What are the key properties of monolithic refractories?
- Monolithic refractories, which lack a definite form like bricks or tiles, are a type of refractory material. They are typically composed of a mixture of aggregates, binders, and additives that can be easily molded and installed in various industrial applications. The main characteristics of monolithic refractories include: 1. Exceptional heat resistance: Designed to endure extremely high temperatures, monolithic refractories are suitable for industries such as steel, cement, glass, and petrochemicals. They can maintain their strength and structural integrity even at temperatures exceeding 3000 degrees Fahrenheit. 2. Ability to withstand thermal shock: Monolithic refractories possess the capacity to resist sudden temperature changes, which can cause cracking or damage to the refractory. This property is crucial in environments where rapid heating or cooling occurs, such as furnaces or kilns. 3. Resistance to chemical attack: Monolithic refractories display excellent resistance to corrosion from molten metals, slag, gases, and other harsh substances. This makes them ideal for environments where contact with acidic or alkaline materials is common. 4. Low porosity: Monolithic refractories have low porosity, meaning they have a high density and are less permeable to gases and liquids. This property ensures that molten metals or corrosive substances cannot easily penetrate the refractory, contributing to its longevity and performance. 5. Easy installation and repair: Unlike traditional refractory materials like bricks, monolithic refractories can be easily molded and installed in various shapes and sizes. They can be applied using techniques such as spraying, casting, or ramming, allowing for faster installation and reduced downtime. Additionally, if any damage occurs, they can be easily repaired or patched. 6. Strong mechanical strength: Monolithic refractories possess sufficient mechanical strength to endure the stresses and pressures encountered during their service life. This guarantees their structural integrity, even under high load conditions. Overall, the versatile and reliable properties of monolithic refractories make them an excellent choice for a wide range of industrial applications that require resistance to high temperatures, chemicals, and thermal shock.
- Q:In iron and steel industry, the main raw materials for blast furnace ironmaking are iron ore, coke and limestone. What's the use of limestone here?
- Calcium oxide absorbs sulfur dioxide and prevents it from polluting the air.
- Q:How do monolithic refractories contribute to energy efficiency in iron and steel production?
- Monolithic refractories contribute to energy efficiency in iron and steel production by providing superior insulation and heat containment properties. These refractories have low thermal conductivity, which minimizes heat loss and ensures that the intense temperatures required for the production process are maintained within the furnace or kiln. This reduces the need for excessive fuel consumption and enables more efficient use of energy resources. Additionally, monolithic refractories can withstand high temperatures without significant structural damage, prolonging their lifespan and reducing the frequency of replacement, further contributing to energy efficiency in the industry.
- Q:What are the different techniques for installing monolithic refractories?
- Some of the different techniques for installing monolithic refractories include gunning, casting, ramming, and troweling. Gunning involves spraying a mixture of refractory material and water onto the surface using a high-pressure gun. Casting involves pouring the refractory material into a mold and allowing it to harden. Ramming involves manually packing the refractory material into place using a ramming tool. Troweling involves applying the refractory material with a trowel, similar to applying mortar.
- Q:How are monolithic refractories different from traditional refractory materials?
- There are several ways in which monolithic refractories differ from traditional refractory materials. Firstly, while traditional refractory materials are typically made from bricks, blocks, or tiles, monolithic refractories are made from a single continuous material. This means that they do not have any joints or seams, which can weaken traditional refractory structures. Secondly, installing monolithic refractories is much easier compared to traditional refractory materials. They can be easily shaped and applied on site, allowing for greater flexibility in design and construction. In contrast, traditional refractory materials require skilled labor and more time-consuming installation methods such as bricklaying. Additionally, monolithic refractories offer improved resistance to thermal shock. Because of their continuous structure, they can better withstand sudden changes in temperature without cracking or spalling. On the other hand, traditional refractory materials may be more susceptible to thermal shock damage. Another advantage of monolithic refractories is their ability to provide better insulation. They are often composed of lightweight aggregates or insulating fibers, which help to reduce heat loss and improve energy efficiency. Traditional refractory materials, while still capable of providing insulation, may not offer the same level of thermal efficiency. Lastly, monolithic refractories are more cost-effective. Their ease of installation, reduced labor requirements, and improved thermal performance contribute to lower overall project costs compared to traditional refractory materials. To sum up, monolithic refractories have a continuous structure, are easy to install, offer improved thermal shock resistance, provide better insulation properties, and are cost-effective. These characteristics make them the preferred choice in many industries that require high-temperature applications and thermal insulation.
1. Manufacturer Overview |
|
---|---|
Location | |
Year Established | |
Annual Output Value | |
Main Markets | |
Company Certifications |
2. Manufacturer Certificates |
|
---|---|
a) Certification Name | |
Range | |
Reference | |
Validity Period |
3. Manufacturer Capability |
|
---|---|
a)Trade Capacity | |
Nearest Port | |
Export Percentage | |
No.of Employees in Trade Department | |
Language Spoken: | |
b)Factory Information | |
Factory Size: | |
No. of Production Lines | |
Contract Manufacturing | |
Product Price Range |
Send your message to us
Castable Refractory Cement For Fireplace and Industrial Furnace
- Loading Port:
- China main port
- Payment Terms:
- TT OR LC
- Min Order Qty:
- 1000 kg
- Supply Capability:
- 3000000 kg/month
OKorder Service Pledge
OKorder Financial Service
Similar products
Hot products
Hot Searches
Related keywords