• Hot Rolled Square Steel Billet 3SP Standard 145mm System 1
  • Hot Rolled Square Steel Billet 3SP Standard 145mm System 2
  • Hot Rolled Square Steel Billet 3SP Standard 145mm System 3
  • Hot Rolled Square Steel Billet 3SP Standard 145mm System 4
  • Hot Rolled Square Steel Billet 3SP Standard 145mm System 5
  • Hot Rolled Square Steel Billet 3SP Standard 145mm System 6
Hot Rolled Square Steel Billet 3SP Standard 145mm

Hot Rolled Square Steel Billet 3SP Standard 145mm

Ref Price:
get latest price
Loading Port:
Shanghai
Payment Terms:
TT OR LC
Min Order Qty:
2000 m.t.
Supply Capability:
10000 m.t./month

Add to My Favorites

Follow us:


OKorder Service Pledge

Quality Product, Order Online Tracking, Timely Delivery

OKorder Financial Service

Credit Rating, Credit Services, Credit Purchasing

Structure of Hot Rolled Square Steel Billet 3SP Standard 145mm  

 Hot Rolled Square Steel Billet 3SP Standard 145mm

Description of Hot Rolled Square Steel Billet 3SP Standard 145mm  

PPGI is made by cold rolled steel sheet and galvanized steel sheets as baseplate,  through the surface pretreatment (degreasing, cleaning, chemical conversion processing), coated by the method of continuous coatings (roller coating method), 

and after roasting and cooling. Zinc coating: Z60, Z80, Z100, Z120, Z180, Z275, G30, G60, G90
Alu-zinc coating: AZ60, AZ80, AZ100, AZ120, AZ180, G30, G60, G90 

 

Hot Rolled Square Steel Billet 3SP Standard 145mm

Main Feature of Hot Rolled Square Steel Billet 3SP Standard 145mm  

1) Excellent corrosion resistance: The zinc layer provides a good protection of Pre-painted Galvanizeed Steel Sheet.
2) High heat resistance: The reflective surface of the material aids in efficiently reflecting the sunlight away and in turn reducing the amount of heat transmitted. The thermal reflectivity converts into energy savings.
3) Aesthetics: Pre-Painted Galvanized steel sheet is available in plethora of patterns and multiple sizes as per the requirements that given by our customers.
4) Versatility: can be used in the various areas.
Standard seaworthy export packing: 3 layers of packing, inside is kraft paper, water plastic film is in the middle and outside GI steel sheet to be covered by steel strips with lock, with inner coil sleeve.

 

Applications of Hot Rolled Square Steel Billet 3SP Standard 145mm 

1) Automotive bodies: filters, fuel tanks, etc.

2) Construction materials: roofings, welding pipes,

3) Electric and electronic appliances: computer cans, etc.

4) Steel cans: containers, etc.

5) Steel furniture: washing machines, refrigerators, microwaves, etc.

6) Drums

7) Office equipment: printer, recorders, etc.

8) Motors and transformers

 Hot Rolled Square Steel Billet 3SP Standard 145mm

Specifications of Hot Rolled Square Steel Billet 3SP Standard 145mm  

Classified symbolYield Point Minimum N/mm2Tensile Strength MinimumElongation Minimum %Application
N/mm2Nominal Thickness mm (t)
JISYogic
0.25-0.40.4-0.60.6-1.01.0-1.6
G3312specification
CGCCCGCC-205-270-20-21-24-24Commercial
CGCDCGCD---270---273132Drawing
---CG34024534020202020Structural
CGC400CG40029540016171818Structural
CGC440CG44033544014151618Structural
CGC490CG49036549012131416Structural
CGC570CG570560570------------Structural









ASTM DesignationYield Point MinimumTensile Strength MinimumElongation Minimum %Application
Q/BQB 445-2004(China standard)ASM A653/A653MJISG 3312
ksi(MPa)ksi(MPa)
TDC51D+Z(CS TYPE A+Z)CGCC
A653(M)-99 CS TYPE A,B,C---------Commercial
TDC52D+Z
CGCD
A653(M)-99 FS---------Lock Forming
TS250GD+Z(G250+Z)-
A653(M)-99 DS---------Drawing
TS300GS+Z(G300+Z)CGC 400
A653(M)-99 SS Grade33(230)33(230)45(310)20Structural
TS350GD+Z(G350+Z)CGC490
A653(M)-99 SS Grade37(255)37(255)52(360)18Structural
TS550GD+Z(G550+Z)CGC570
A653(M)-99 SS Grade40(275)40(275)55(380)16Structural



A653(M)-99 SS Grade50(345)50(345)65(450)12Structural



A653(M)-99 SS Grade80(550)80(550)82(570)---Structural



FAQ of Hot Rolled Square Steel Billet 3SP Standard 145mm  

We have organized several common questions for our clients,may help you sincerely: 

1. How Can I Visit There?
  Our company is located in Tianjin City, China, near Beijing. You can fly to Tianjin Airport Directly. All our clients, from home or aboard, are warmly   welcome to visit us!  
2. How Can I Get Some Sample?
  We are honored to offer you sample.  
3. Why choose CNBM?
  1, ISO, BV, CE, SGS approved.
  2, Competitive price and quality. 
  3, Efficient service team online for 24 hours. 
  4, Smooth production ability(50000tons/month) .
  5, quick delivery and standard exporting package. 
  6, Flexible payment with T/T, L/C, Paypal, Kunlun bank, etc.

Q: What are the potential applications of steel billets in the chemical aftermarket?
Steel billets have a wide range of potential applications in the chemical aftermarket. One of the key uses of steel billets is in the production of various chemical processing equipment. These billets can be used to manufacture reactors, heat exchangers, columns, and other critical components that are used in chemical plants. Furthermore, steel billets are also utilized in the construction of storage tanks for storing chemicals. These tanks need to be strong, durable, and resistant to corrosion, and steel billets provide the necessary properties to meet these requirements. In addition, steel billets find applications in the fabrication of pipelines and piping systems used for transporting chemicals. The high strength and resistance to temperature and pressure make steel billets an ideal choice for constructing pipelines that can handle corrosive and hazardous chemicals. Moreover, steel billets can be shaped and formed into various fittings and flanges that are essential components in chemical systems. These fittings and flanges are used to connect different sections of piping, valves, and other equipment, ensuring a secure and leak-free operation. Overall, the potential applications of steel billets in the chemical aftermarket are vast and diverse. From manufacturing chemical processing equipment to constructing storage tanks, pipelines, and fittings, steel billets play a crucial role in ensuring the safe and efficient operation of chemical facilities.
Q: How do steel billets contribute to the strength of a structure?
Steel billets contribute to the strength of a structure in several ways. Firstly, steel billets are produced by a process called casting, which involves pouring molten steel into molds and allowing it to solidify. This method ensures that the steel billets have a consistent and uniform composition, with minimal impurities. As a result, the structural integrity and strength of the final product are enhanced. Secondly, steel billets undergo a process called hot rolling or cold rolling, which further improves their strength. Hot rolling involves heating the steel billets to high temperatures and then passing them through a series of rollers, which compress and shape the steel into the desired form. This process helps align the steel's grain structure, making it stronger and more resistant to deformation. Additionally, steel billets are often used as raw material for the production of other steel products, such as beams, columns, and plates. These fabricated steel components are then incorporated into structures, providing additional strength and support. The high strength and durability of steel billets make them ideal for withstanding heavy loads, seismic forces, and other external pressures. Moreover, steel billets can be alloyed with other elements, such as carbon, manganese, and chromium, to enhance their mechanical properties and increase their strength. The addition of these alloying elements improves the steel's hardness, toughness, and resistance to corrosion, making it even more suitable for structural applications. Overall, steel billets play a crucial role in enhancing the strength of a structure. Through their uniform composition, hot or cold rolling processes, and alloying capabilities, steel billets contribute to the overall structural integrity, durability, and load-bearing capacity of buildings, bridges, and other infrastructure projects.
Q: How are steel billets used in the production of automotive braking systems?
Steel billets are an important component in the production of automotive braking systems. These billets are essentially semi-finished steel products that are used as raw material for further processing. They are typically manufactured through the process of casting, where molten steel is poured into molds and allowed to solidify. In the context of automotive braking systems, steel billets are primarily used to manufacture brake rotors or discs. These components play a crucial role in the braking system as they provide the surface on which the brake pads make contact and create friction, ultimately stopping the vehicle. Brake rotors are subjected to high levels of stress and heat during braking, and therefore require a material that is strong, durable, and heat-resistant, which is where steel comes into play. Once the steel billets are obtained, they undergo a series of manufacturing processes to transform them into brake rotors. The first step involves heating the billets to a specific temperature, which helps to enhance their malleability and make them easier to shape. This is followed by a process called forging, where the heated billets are subjected to high pressure to shape them into the desired form of the brake rotor. This forging process helps to improve the strength and integrity of the steel, making it more resistant to wear and deformation. After forging, the brake rotor undergoes additional machining processes. This includes turning the surface of the rotor to ensure it is flat and smooth, thus providing an even contact surface for the brake pads. The rotor may also be drilled or slotted to improve heat dissipation and prevent the buildup of gases or debris between the pad and rotor. These machining processes help to achieve the required dimensions and surface finish of the brake rotor. Once the brake rotor has been manufactured, it is then assembled with other components of the braking system, such as brake calipers, pads, and hydraulic lines, to create a functional braking system. The steel billets used in the production of brake rotors ensure that the braking system is reliable, durable, and capable of withstanding the demanding conditions of automotive braking. In summary, steel billets are essential in the production of automotive braking systems as they are transformed into brake rotors, which are crucial components for stopping vehicles. The billets are heated, forged, and machined to achieve the desired dimensions, strength, and surface finish of the rotor. The end result is a reliable and durable braking system that ensures the safety and performance of the vehicle.
Q: How are steel billets used in the production of wind turbine components?
Steel billets serve as a crucial raw material in the production of wind turbine components. These large blocks of semi-finished steel are essential for various manufacturing processes. The fabrication of tower sections is one of the primary uses of steel billets in wind turbine production. The tower is a vital component that supports the entire turbine structure and must withstand strong winds and environmental conditions. To create the tower sections, the steel billets are heated and then rolled or forged into the desired shape and size. The sections are then welded together to form the complete tower structure. In addition to tower sections, steel billets are also utilized in manufacturing other wind turbine components such as the hub, nacelle, and main shaft. The hub holds the rotor blades and the nacelle houses the generator and other critical parts. Both of these components require high-strength steel, which can be obtained through the processing of steel billets. Similarly, the main shaft, which connects the rotor hub to the gearbox, needs to be extremely durable and capable of withstanding the torque generated by the blades. The utilization of steel billets in wind turbine production is driven by the exceptional mechanical properties of the material. Steel provides high strength, enabling the turbine components to withstand the extreme forces they encounter during operation. Additionally, steel possesses excellent fatigue resistance, which is crucial considering the continuous rotation and cyclic loading of wind turbines. In conclusion, steel billets play a vital role in ensuring the structural integrity and reliability of wind turbine components. By incorporating steel billets into the manufacturing process, manufacturers can produce strong and durable components that contribute to the efficient and sustainable generation of wind power.
Q: How are steel billets used in the manufacturing of fasteners?
Steel billets are an essential component in the manufacturing of fasteners. Fasteners are devices used to join or secure two or more objects together. They are commonly found in various industries such as automotive, construction, and manufacturing. In the production of fasteners, steel billets serve as the raw material. A steel billet is a semi-finished product that typically has a square or rectangle cross-section. It is created through a process called casting, where molten steel is poured into a mold and allowed to cool and solidify. Once the steel billets are obtained, they undergo a series of manufacturing processes to transform them into fasteners. These processes include hot rolling, cold drawing, and machining. Hot rolling is the initial step, where the steel billets are heated to high temperatures and passed through a set of rollers. This process helps shape the billets into long, cylindrical bars or rods of the desired diameter. Next, the hot-rolled bars are subjected to a process called cold drawing. In this process, the bars are pulled through a series of dies to reduce their diameter and improve their surface finish. Cold drawing also helps enhance the mechanical properties of the steel, making it stronger and more durable. Finally, the steel bars are machined to create the specific fastener design. This involves cutting, threading, and forming the bars to produce bolts, screws, nuts, or other types of fasteners. The machined fasteners are then subjected to heat treatment processes such as quenching and tempering to further enhance their strength and hardness. In summary, steel billets are crucial in the manufacturing of fasteners as they provide the raw material that undergoes various transformation processes. Through hot rolling, cold drawing, and machining, steel billets are shaped into the desired form, resulting in high-quality fasteners that meet industry standards.
Q: How are steel billets inspected for hardness?
Various methods and techniques are used to inspect the hardness of steel billets. Among these methods, the Rockwell hardness test is commonly employed. This test measures the depth of penetration of an indenter into the steel surface under a specific load to determine the hardness value. It is a quick and reliable way to assess the hardness of steel billets. Another method used for hardness inspection is the Brinell hardness test. This test involves applying a specific load on a hardened steel ball and measuring the diameter of the resulting indentation on the steel surface. The hardness value is calculated based on the applied load and the diameter of the indentation. The Brinell hardness test is useful for large steel billets or when a larger area needs to be tested. Additionally, the Vickers hardness test can be employed to inspect the hardness of steel billets. This method uses a diamond pyramid-shaped indenter to create an impression on the steel surface. The diagonals of the impression are measured, and the hardness value is determined based on the applied load and the surface area of the impression. The Vickers hardness test is commonly used for materials with high hardness or small components. In addition to these traditional hardness testing methods, advanced techniques such as ultrasonic testing and magnetic induction are also available. Ultrasonic testing involves sending high-frequency sound waves through the steel billet and measuring the time it takes for the waves to be reflected back. Any variations in the hardness of the billet can be detected through changes in the ultrasonic waves. On the other hand, magnetic induction utilizes magnetic fields to assess the hardness of steel. By measuring the electrical conductivity and permeability of the steel billet, the hardness can be estimated. Overall, there are several techniques available for inspecting the hardness of steel billets, including Rockwell, Brinell, and Vickers hardness tests, as well as ultrasonic testing and magnetic induction. These methods provide valuable information about the hardness properties of the billets, enabling manufacturers to ensure the quality and suitability of the steel for various applications.
Q: How are steel billets used in the manufacturing of rail tracks?
Steel billets are an essential component in the manufacturing of rail tracks. A billet is a semi-finished piece of steel that is commonly used as a starting material in various metalworking processes. In the case of rail track manufacturing, steel billets are first heated to a high temperature and then passed through a series of rolling mills. During the rolling process, the steel billets are gradually shaped and elongated to form long, narrow sections known as rail blooms. These rail blooms are then further processed and shaped through hot rolling, where they are passed through multiple sets of rollers to achieve the desired dimensions and shape of the rail track. This process helps in improving the mechanical properties of the steel, such as its strength and durability. Once the rail blooms are shaped, they undergo a process called controlled cooling, where they are cooled at a specific rate to optimize their microstructure and properties. This controlled cooling helps in reducing internal stresses and improving the overall quality of the rail tracks. After the controlled cooling process, the rail blooms are further processed through straightening, cutting, and finally, finishing operations. These operations ensure that the rail tracks are straight, have precise dimensions, and meet the required standards and specifications. In summary, steel billets play a crucial role in the manufacturing of rail tracks. They are transformed into rail blooms through a series of rolling processes, and then further processed to produce high-quality rail tracks that are strong, durable, and able to withstand the heavy loads and constant use of railway transportation systems.
Q: Can steel billets be used in the production of mining equipment?
Yes, steel billets can be used in the production of mining equipment. Steel billets are a common starting material for manufacturing various types of machinery and equipment, including those used in the mining industry. The high strength and durability of steel make it an ideal choice for mining equipment due to the demanding nature of mining operations. Steel billets can be forged, machined, and shaped into components or parts that are essential for mining equipment, such as gears, shafts, frames, and buckets.
Q: What is the typical fatigue strength of a steel billet?
The typical fatigue strength of a steel billet can vary depending on various factors such as the specific grade of steel, the manufacturing process, and any surface treatments applied. However, in general, steel billets can have a fatigue strength ranging from around 200 to 400 megapascals (MPa).
Q: What does the billet of the steel plant refer to?
When rolling the long material, the square billet is poured, the rolled plate is cast, the rolling pipe is cast into round billet, and the rolled narrow strip steel is poured into the rectangular billet, etc..

Send your message to us

This is not what you are looking for? Post Buying Request

Similar products

Hot products


Hot Searches

Related keywords