• Monolithic Refractories for Iron and Steel Industry - Hot-dip Zinc Coating Steel Building Roof Walls with Excellent Process Capability System 1
  • Monolithic Refractories for Iron and Steel Industry - Hot-dip Zinc Coating Steel Building Roof Walls with Excellent Process Capability System 2
  • Monolithic Refractories for Iron and Steel Industry - Hot-dip Zinc Coating Steel Building Roof Walls with Excellent Process Capability System 3
  • Monolithic Refractories for Iron and Steel Industry - Hot-dip Zinc Coating Steel Building Roof Walls with Excellent Process Capability System 4
  • Monolithic Refractories for Iron and Steel Industry - Hot-dip Zinc Coating Steel Building Roof Walls with Excellent Process Capability System 5
Monolithic Refractories for Iron and Steel Industry - Hot-dip Zinc Coating Steel Building Roof Walls with Excellent Process Capability

Monolithic Refractories for Iron and Steel Industry - Hot-dip Zinc Coating Steel Building Roof Walls with Excellent Process Capability

Ref Price:
get latest price
Loading Port:
China main port
Payment Terms:
TT OR LC
Min Order Qty:
50 m.t.
Supply Capability:
10000 m.t./month

Add to My Favorites

Follow us:


OKorder Service Pledge

Quality Product, Order Online Tracking, Timely Delivery

OKorder Financial Service

Credit Rating, Credit Services, Credit Purchasing

 

Hot-dip Zinc Coating Steel Building Roof Walls--Excellent Process Capability

1.Structure of Hot-Dip Galvanized Steel Sheet Description

Hot-dip galvanized steel coils are available with a pure zinc coating through the hot-dip galvanizing process. It offers the economy, strength and formability of steel combined with the corrosion resistance of zinc. The hot-dip process is the process by which steel gets coated in layers of zinc to protect against rust. It is especially useful for countless outdoor and industrial applications. Production of cold formed corrugated sheets and profiles for roofing, cladding, decking, tiles, sandwich walls, rainwater protective systems, air conditioning duct as well as electrical appliances and engineering.

2.Main Features of the Hot-Dip Galvanized Steel Sheet

• Excellent process capability

• Smooth and flat surface

• Workability, durability 

• Good visual effect

3.Hot-Dip Galvanized Steel Sheet Images

 

Hot-dip Zinc Coating Steel Building Roof Walls--Excellent Process Capability

Hot-dip Zinc Coating Steel Building Roof Walls--Excellent Process Capability

 

 

4.Hot-Dip Galvanized Steel Sheet Specification

Standard: ASTM, JIS,EN

Grade: CS, DX51D+Z,SGCC, SS 230~550,S220GD+Z~S550GD+Z, SGC340~SGC570

Thickness: 0.18mm~5mm

Width: max 2000mm

Coil weight:3-12 MT

Coil ID:508/610mm

Surface structure: zero spangle, regular spangle or minimum spangle

Surface treatment: Chromate treatment, Oiled/dry, skinpassed/non-skinpassed

 

 5.FAQ of Hot-Dip Galvanized Steel Sheet 

1.How to guarantee the quality of the products?

We have established the international advanced quality management system,every link from raw material to final product we have strict quality test.

 

2. How long can we receive the product after purchase?

Usually within thirty working days after receiving buyer’s advance payment or LC. We will arrange the factory manufacturing as soon as possible. The cargo readiness usually takes 15-30 days, but the shipment will depend on the vessel situation.

 

 

Q: How do monolithic refractories improve the efficiency of reheating furnaces in steel plants?
The efficiency of reheating furnaces in steel plants is greatly improved by the use of monolithic refractories. Specifically designed to withstand high temperatures and harsh conditions, these refractories are an ideal choice for steel plants. One important way in which monolithic refractories enhance furnace efficiency is by decreasing heat loss. With their excellent insulation properties, these refractories minimize the transfer of heat from the furnace to its surroundings. As a result, less energy is wasted and the furnace can maintain its desired temperature more effectively. Furthermore, monolithic refractories contribute to a more uniform and controlled distribution of heat within the furnace. They can be easily shaped and installed to create a seamless lining, ensuring that heat is evenly spread throughout the furnace chamber. This even distribution of heat eliminates any hotspots or cold spots, resulting in a more efficient heating process. Another crucial role of monolithic refractories is reducing downtime and maintenance requirements. Unlike traditional brick linings, which are prone to cracking and erosion, monolithic refractories offer superior resistance to wear and tear. This increased durability reduces the need for frequent repairs and replacements, allowing for uninterrupted furnace operation and increased overall efficiency. Moreover, monolithic refractories help improve energy efficiency by decreasing fuel consumption. The superior insulation properties of these refractories help retain heat within the furnace, reducing the amount of energy needed to maintain the desired temperature. This leads to significant energy savings for steel plants, as less fuel is required to achieve the same heating results. In conclusion, the efficiency of reheating furnaces in steel plants is significantly enhanced by the use of monolithic refractories. These refractories reduce heat loss, ensure uniform heat distribution, minimize downtime and maintenance, and decrease fuel consumption. By incorporating these refractories into their furnace linings, steel plants can increase productivity, reduce energy costs, and improve overall operational efficiency.
Q: How do monolithic refractories resist erosion from molten metals and slags?
Monolithic refractories resist erosion from molten metals and slags through several mechanisms. Firstly, they have a high melting point, which allows them to withstand the high temperatures of molten metals and slags without any significant degradation. Secondly, they have a dense and compact structure, which reduces the penetration of molten metals and slags into their surface. Additionally, monolithic refractories often contain additives such as antioxidants or slag resistance agents, which further enhance their resistance to erosion.
Q: How do monolithic refractories perform in aluminum holding furnace applications?
Monolithic refractories perform exceptionally well in aluminum holding furnace applications due to their high thermal conductivity, excellent resistance to thermal shock, and superior mechanical strength. They can withstand the extreme temperatures and harsh chemical environments found in these furnaces, ensuring long-lasting and efficient operations. Additionally, monolithic refractories offer easy installation and maintenance, making them a preferred choice in aluminum holding furnace applications.
Q: How do monolithic refractories enhance the performance of ladles and tundishes?
Monolithic refractories play a crucial role in enhancing the performance of ladles and tundishes in several ways. Firstly, monolithic refractories are known for their high thermal stability and resistance to thermal shock. Ladles and tundishes are subjected to extreme temperatures and thermal cycling during the process of molten metal transfer. Monolithic refractories provide excellent insulation and structural integrity, ensuring that the ladles and tundishes can withstand these harsh conditions without experiencing cracking or failure. Furthermore, monolithic refractories offer exceptional corrosion resistance. In the ladle and tundish environments, molten metal, slag, and other chemicals can cause corrosion and erosion of the lining. Monolithic refractories are designed to resist these corrosive agents, extending the service life of ladles and tundishes and minimizing the need for frequent repairs or replacements. Another advantage of monolithic refractories is their ability to form a tight and seamless lining. Unlike traditional brick or tile linings, which have joints that can deteriorate over time, monolithic refractories are typically applied as a single, continuous layer. This seamless lining significantly reduces the risk of metal and slag penetration, ensuring better containment of the molten metal and preventing contamination. Moreover, monolithic refractories offer versatility and ease of installation. They can be easily shaped and applied to various complex geometries, allowing for customized linings in ladles and tundishes. This versatility also enables faster installation and reduces downtime during maintenance and repairs. Overall, the use of monolithic refractories in ladles and tundishes contributes to improved performance, increased operational efficiency, and reduced costs. Their ability to withstand extreme temperatures, resist corrosion, provide a tight lining, and offer ease of installation makes them a preferred choice in the steel and foundry industries.
Q: How do monolithic refractories perform in blast furnace taphole applications?
Monolithic refractories perform excellently in blast furnace taphole applications due to their high thermal resistance, mechanical strength, and resistance to chemical attack. They are able to withstand the extreme temperatures and abrasive conditions of the blast furnace discharge, ensuring reliable and efficient operation of the taphole. Additionally, monolithic refractories offer easy installation and maintenance, reducing downtime and improving overall productivity in the blast furnace.
Q: What are the main factors affecting the corrosion resistance of monolithic refractories?
The corrosion resistance of monolithic refractories is influenced by several key factors. Firstly, the chemical composition of the refractory material plays a significant role. Refractories with a high content of silica (SiO2) are generally more resistant to corrosion as silica has excellent resistance to acidic environments. On the other hand, refractories with a high alumina (Al2O3) content are more resistant to basic environments. Secondly, the microstructure of the refractory material is important. A dense and well-bonded microstructure provides better resistance to corrosion compared to materials with a porous structure. The presence of pores or cracks can allow corrosive substances to penetrate and attack the refractory, leading to its degradation. The temperature at which the refractory is exposed also affects its corrosion resistance. Higher temperatures can accelerate the corrosion process by promoting more aggressive chemical reactions. Moreover, thermal cycling, where the refractory is subjected to repeated heating and cooling, can create thermal stresses that can contribute to the degradation of the material. The type and concentration of corrosive agents present in the environment also impact the corrosion resistance of monolithic refractories. Different corrosive agents have varying degrees of reactivity with refractory materials. For example, acidic substances such as sulfuric acid or hydrochloric acid can cause significant corrosion, while alkaline substances like calcium oxide can lead to more gradual degradation. In addition, the mechanical stress applied to the refractory can influence its corrosion resistance. Mechanical vibrations, abrasion, or impact can weaken the refractory structure, making it more susceptible to corrosion. Finally, the manufacturing and installation process can affect the corrosion resistance of monolithic refractories. Factors such as proper mixing, curing, and drying techniques can contribute to the development of a more resistant refractory structure. In summary, the main factors affecting the corrosion resistance of monolithic refractories include the chemical composition, microstructure, temperature, presence of corrosive agents, mechanical stress, and manufacturing/installation processes. Understanding and managing these factors are crucial in selecting and maintaining the most suitable refractory material for a given application.
Q: What are the factors affecting the thermal expansion of monolithic refractories?
There are several factors that influence the thermal expansion of monolithic refractories. 1. Chemical Composition: The chemical composition of the refractory material plays a significant role in its thermal expansion. Different chemical elements and compounds have different coefficients of thermal expansion. For example, materials containing high levels of silica tend to have lower coefficients of thermal expansion compared to materials with higher concentrations of alumina. 2. Particle Size: The particle size distribution of the refractory material can affect its thermal expansion. Smaller particle sizes tend to result in higher thermal expansion due to increased surface area and greater contact between particles. 3. Temperature: The temperature at which the monolithic refractory is exposed can greatly impact its thermal expansion. As the temperature increases, the kinetic energy of the particles increases, causing them to move more vigorously and expand. Different refractory materials have different temperature ranges at which they exhibit significant expansion. 4. Thermal History: The thermal history of the refractory material, including its heating and cooling cycles, can influence its thermal expansion behavior. Repeated heating and cooling cycles can induce microstructural changes in the material, affecting its thermal expansion properties. 5. Porosity: The porosity of the monolithic refractory can affect its thermal expansion. Higher porosity generally leads to higher thermal expansion due to the presence of voids and gaps within the material. 6. Binder Content: Monolithic refractories often contain binders that hold the particles together. The type and amount of binder used can impact the thermal expansion of the refractory. Different binders have different coefficients of thermal expansion, which can influence the overall expansion behavior of the material. 7. Thermal Shock: Rapid temperature changes, such as during quenching or exposure to alternating heating and cooling, can cause thermal shock in the refractory material. This can lead to cracks, spalling, and changes in the thermal expansion behavior. Understanding these factors is crucial in selecting the appropriate monolithic refractory material for specific applications, as the thermal expansion characteristics can directly impact the performance and longevity of the refractory in high-temperature environments.
Q: How do monolithic refractories withstand high temperatures in iron and steel processing?
Monolithic refractories are able to withstand high temperatures in iron and steel processing due to their unique composition and design. These refractories are made from a single, solid material as opposed to being composed of multiple layers. This monolithic structure allows for superior thermal conductivity and resistance to thermal shock. One key aspect that enables monolithic refractories to withstand high temperatures is their high melting point. These refractories are typically made from materials such as alumina, magnesia, silica, or zirconia, which have melting points well above the temperatures encountered in iron and steel processing. This ensures that the refractories do not deteriorate or melt when exposed to these extreme temperatures. Furthermore, monolithic refractories have excellent thermal insulation properties. They possess low thermal conductivity, which means they can effectively prevent heat transfer from the hot molten metal or gases to the surrounding environment. This insulation property helps to maintain high temperatures within the processing units, ensuring efficient and effective iron and steel production. Another important factor in the ability of monolithic refractories to withstand high temperatures is their resistance to thermal shock. During iron and steel processing, rapid temperature changes are common, which can cause traditional refractories to crack or spall. Monolithic refractories, however, have a more homogeneous structure and greater flexibility, allowing them to withstand these rapid temperature fluctuations without significant damage. In addition to their composition, the installation method of monolithic refractories also contributes to their ability to withstand high temperatures. These refractories are typically installed using a technique called gunning or shotcreting, which involves spraying a mixture of refractory material and water onto the surface to form a dense and solid lining. This installation method ensures a tight bond between the refractory and the substrate, enhancing the overall strength and durability of the lining. Overall, monolithic refractories are able to withstand high temperatures in iron and steel processing due to their high melting point, excellent thermal insulation properties, resistance to thermal shock, and proper installation techniques. These refractories play a crucial role in maintaining the integrity and efficiency of the processing units, allowing for the production of high-quality iron and steel products.
Q: How do monolithic refractories improve the efficiency of ladle and tundish preheaters?
Monolithic refractories improve the efficiency of ladle and tundish preheaters by providing excellent insulation, high thermal conductivity, and resistance to thermal shock. These properties allow for better heat retention, reduced heat loss, and quicker and more uniform heating of the ladle and tundish, ultimately improving the overall efficiency of the preheating process.
Q: What are the main factors affecting the erosion resistance of monolithic refractories?
The main factors affecting the erosion resistance of monolithic refractories include the type and composition of the refractory material, the operating temperature and environment, the mechanical strength and density of the refractory, and the presence of impurities or contaminants. Additionally, the design and installation of the refractory lining, as well as the method of installation, can also influence its erosion resistance.

Send your message to us

This is not what you are looking for? Post Buying Request

Similar products

Hot products


Hot Searches

Related keywords