• Monolithic Refractories High Temperature Ladle Sliding Gate for Iron and Steel Industry System 1
  • Monolithic Refractories High Temperature Ladle Sliding Gate for Iron and Steel Industry System 2
  • Monolithic Refractories High Temperature Ladle Sliding Gate for Iron and Steel Industry System 3
  • Monolithic Refractories High Temperature Ladle Sliding Gate for Iron and Steel Industry System 4
  • Monolithic Refractories High Temperature Ladle Sliding Gate for Iron and Steel Industry System 5
  • Monolithic Refractories High Temperature Ladle Sliding Gate for Iron and Steel Industry System 6
Monolithic Refractories High Temperature Ladle Sliding Gate for Iron and Steel Industry

Monolithic Refractories High Temperature Ladle Sliding Gate for Iron and Steel Industry

Ref Price:
get latest price
Loading Port:
Shanghai
Payment Terms:
TT OR LC
Min Order Qty:
100 pc
Supply Capability:
1000 pc/month

Add to My Favorites

Follow us:


OKorder Service Pledge

Quality Product, Order Online Tracking, Timely Delivery

OKorder Financial Service

Credit Rating, Credit Services, Credit Purchasing

Quick Details for High Performance Refractory Ladle Slide Gate

Place of Origin:

 China (Mainland)

Shape:

Plate

Material:

Alumina Block

SiO2 Content (%):

N/A

Al2O3 Content (%):

80-90%

MgO Content (%):

N/A

CaO Content (%):

N/A

Refractoriness (Degree):

1770°< Refractoriness< 2000°

CrO Content (%):

N/A

SiC Content (%):

N/A

Model Number:

CS80

Brand Name:


Product name:

High performance refractory ladle slide gate

Model No.:

cs80

Brand name:

CMAX

Quality:

Al-C or Al-Zr-C

Service life:

4-6 heats

Apparent porosity:

7% Max

Bulk density::

3.1 MIN

C.C.S:

120MPA

MOQ:

100 pcs for trial

Delivery time:

60 working days upon receipt of deposit






Packaging & Delivery

Packaging Details:Inner carton packing, outer wooden case suitable for long term sea shipping
Delivery Detail:three months working days upon receipt of deposit


Specifications

Surface flatness less than 0.05mm 
High mechanical strength 
Erosion resistance 
Oxidation resistance 
Thermal shock stability

General Chemical Analysis for  refractory ladle slide gate :


slide gate plate widely including Alumina carbon and Alumina Zirconia Carbon slide gate plate, MgO and MgO-spinel slide gate plate,nonoxides bonding slide gate plateand unburned slide gate plate.


Alumina -Zirconia-Carbon material

Al-Zr-C Material
Al2O3CZrO2Apparent porosityBulk densityC.C.S
(% minm)(% minm)(% minm)(% max)(gm./cc minm)(MPa minm)
853573.1120
853473.1120

Composite type: Al-Zr-C for working line, outer Al-C material


High Temperature Ladle  Sliding Gate for Steel Industry



Al-Zr-C & Al-C Material

Al2O3CZrO2Apparent porosityBulk densityC.C.S

(% minm)(% minm)(% minm)(% max)(gm./cc minm)(MPa minm)
Inner side (Working face)853473.1120
     Outside903093


Using the raw materials of tabular alumina, zirconia-corundum, carbon and other high-grade additives, after sintering to obtain characteristics of oxidation resistance, scour strength, erosion resistance, thermal shock resistance, shape stable and long service life, made our products the preferred materials for the large and medium-sized steel ladle, refining ladle, series of alloy steel ladle, and tundish. Our high performance sintering sliding gates include alumina carbon , Al2O3-ZrO2-C, etc, can meet the needs of different steel grade.

High Temperature Ladle  Sliding Gate for Steel Industry

High Temperature Ladle  Sliding Gate for Steel Industry

Other Products


High Temperature Ladle  Sliding Gate for Steel Industry


About us

High Temperature Ladle  Sliding Gate for Steel Industry

High Temperature Ladle  Sliding Gate for Steel Industry




Welcome to visit our factory~

Q:How are monolithic refractories inspected and tested for quality assurance?
To ensure the reliability and performance of monolithic refractories, a series of rigorous processes are conducted for quality assurance. These inspections and tests play a crucial role in maintaining consistent quality standards and identifying any potential defects or weaknesses in the refractory material. The first step involves conducting visual inspections to check for visible defects such as cracks, spalling, or signs of poor manufacturing. This helps in identifying any obvious issues that may affect the refractory's performance. Following that, specialized equipment is used to measure physical properties such as density, porosity, and thermal conductivity. These measurements are then compared against predetermined standards to ensure that the refractory material meets the required specifications. Density and porosity are important indicators of the refractory's strength and resistance to heat and chemicals, while thermal conductivity determines its ability to efficiently transfer heat. Moreover, mechanical tests are performed to assess the refractory's strength and resistance to mechanical stress. This involves subjecting the material to compressive, tensile, and flexural forces to evaluate its structural integrity and durability. To ensure the refractory's suitability for high-temperature environments, thermal tests are conducted. These tests involve exposing the refractory to extreme temperatures and monitoring its behavior. Parameters such as thermal expansion and shrinkage, resistance to thermal shock, and thermal cycling are evaluated during these tests. Chemical analysis is another important aspect of quality assurance for monolithic refractories. Samples of the refractory material are analyzed to determine their chemical composition and assess their resistance to various corrosive environments. This analysis helps ensure that the refractory is suitable for the specific applications it will be used in. Finally, field tests may be conducted at actual operating sites to evaluate the refractory's performance under real-world conditions. These tests involve monitoring the refractory's behavior in terms of wear and tear, thermal insulation, and resistance to chemical attack. The results obtained from field tests are crucial in validating the refractory's performance and making any necessary adjustments to the manufacturing process. In conclusion, monolithic refractories undergo a comprehensive inspection and testing process that includes visual inspections, physical and mechanical tests, thermal analysis, chemical analysis, and field tests. This systematic approach guarantees that the refractories meet the required quality standards, providing reliability and durability in the demanding environments they are designed for.
Q:How do monolithic refractories respond to changes in thermal conditions?
Monolithic refractories have the ability to withstand and adapt to changes in thermal conditions. They have a high thermal shock resistance, meaning they can handle rapid changes in temperature without cracking or breaking. Additionally, they exhibit good thermal conductivity, allowing them to efficiently conduct and distribute heat. Overall, monolithic refractories demonstrate a stable and reliable response to changes in thermal conditions.
Q:How do monolithic refractories contribute to the overall efficiency of ladle cleaning operations?
Monolithic refractories contribute to the overall efficiency of ladle cleaning operations by providing a durable and heat-resistant lining that can withstand high temperatures and chemical reactions. This lining helps to prevent the erosion and corrosion of the ladle, ensuring its longevity and reducing the need for frequent repairs or replacement. Additionally, monolithic refractories offer excellent thermal insulation, which helps to maintain the desired temperature of the ladle's contents and minimize heat loss. This ultimately improves the ladle's efficiency and reduces energy consumption during ladle cleaning operations.
Q:How do monolithic refractories enhance the performance and longevity of furnaces?
Monolithic refractories enhance the performance and longevity of furnaces by providing superior thermal insulation properties, excellent resistance to thermal shocks, and high mechanical strength. They create a seamless lining, eliminating joints and weak points, which reduces heat loss and prevents the penetration of molten metals or aggressive chemicals. Moreover, monolithic refractories offer flexibility in design and installation, allowing for customized shapes and sizes to maximize the efficiency of the furnace. Overall, their use enhances the overall heat transfer, reduces energy consumption, and extends the lifespan of the furnace.
Q:How do monolithic refractories withstand the corrosive environments in steelmaking processes?
Monolithic refractories are able to withstand corrosive environments in steelmaking processes due to their unique properties and composition. First and foremost, monolithic refractories are known for their high resistance to temperature and thermal shock. Steelmaking processes involve extremely high temperatures, sometimes reaching up to 1700 degrees Celsius. Monolithic refractories are designed to withstand these extreme temperatures without losing their structural integrity. Additionally, monolithic refractories have excellent chemical resistance. The corrosive environments in steelmaking processes often consist of aggressive chemicals such as molten metal, slag, and gases like carbon monoxide and sulfur dioxide. Monolithic refractories are made from materials that are resistant to these chemicals, preventing them from reacting and causing corrosion. Moreover, monolithic refractories have a dense and homogeneous structure. This helps to prevent the penetration of corrosive agents into the refractory material, further enhancing its resistance to corrosion. The dense structure also minimizes the formation of cracks and fissures, which can act as pathways for corrosive agents to infiltrate the refractory. Furthermore, monolithic refractories are often made from materials with high refractoriness, such as alumina, magnesia, and silica. These materials have high melting points, which makes them more resistant to the extreme temperatures in steelmaking processes. They also have low thermal conductivity, which helps to minimize heat transfer and reduce the risk of thermal damage to the refractory. Lastly, monolithic refractories are often designed with specific additives and binders that enhance their resistance to corrosion. These additives can include materials like zircon, chrome, or graphite, which provide additional protection against the corrosive environment. In conclusion, monolithic refractories withstand the corrosive environments in steelmaking processes through their high resistance to temperature and thermal shock, excellent chemical resistance, dense and homogeneous structure, high refractoriness, and the use of specific additives and binders. These properties and characteristics make monolithic refractories an ideal choice for withstanding the harsh conditions of steelmaking processes and ensuring the longevity and efficiency of the refractory lining.
Q:How do monolithic refractories enhance the efficiency of reheating furnaces?
Monolithic refractories play a vital role in boosting the efficiency of reheating furnaces through several means. Firstly, they possess excellent thermal insulation properties, which effectively minimize heat losses from the furnace. This insulation helps maintain a consistently high temperature within the furnace, thereby reducing the need for excessive fuel usage and improving energy efficiency. Secondly, monolithic refractories exhibit high thermal conductivity, enabling efficient heat transfer throughout the furnace. This ensures even distribution of the heat generated by the burners, resulting in uniform heating of the materials being reheated. Such uniform heating not only enhances overall efficiency but also prevents the occurrence of hot spots or cold spots that could adversely affect the quality of the reheated products. Furthermore, monolithic refractories demonstrate exceptional resistance to thermal shock and mechanical stress. Given the rapid temperature changes and intense mechanical forces experienced by reheating furnaces during material movement and equipment operation, their use prevents cracks, spalling, and other forms of refractory damage. This ensures the longevity and uninterrupted operation of the furnace without the need for frequent repairs. Additionally, monolithic refractories offer ease of installation, repair, and maintenance compared to traditional brick refractories. They can be cast or sprayed onto the furnace lining, allowing for precise and seamless installation, thereby reducing the risk of weak joints or gaps that could compromise furnace efficiency. Moreover, in the event of any damage or wear, monolithic refractories can be easily repaired or patched up, minimizing downtime and improving overall furnace productivity. In summary, the utilization of monolithic refractories in reheating furnaces enhances efficiency by providing effective thermal insulation, facilitating uniform heat distribution, withstanding thermal shock and mechanical stress, and allowing for easier installation and maintenance. These advantages contribute to lower energy consumption, improved product quality, increased furnace durability, and reduced operational costs.
Q:What are the specific requirements of monolithic refractories for soaking pit applications?
Monolithic refractories used in soaking pit applications need to possess certain specific requirements. They should be able to withstand high temperatures, typically above 1500°C, without losing their structural integrity. They should also exhibit excellent thermal shock resistance to withstand rapid temperature fluctuations during the heating and cooling cycles. Additionally, they must have good resistance to chemical erosion from molten metals and slag present in the soaking pit. Other desirable properties include low porosity, high density, and good mechanical strength to ensure long-term durability and resistance to wear and tear.
Q:What are the benefits of using monolithic refractories in the iron and steel industry?
Monolithic refractories offer numerous benefits in the iron and steel industry. Firstly, they provide excellent thermal insulation, reducing heat loss and improving energy efficiency in furnaces and other equipment. Secondly, monolithic refractories have superior resistance to high temperatures, ensuring prolonged service life even under extreme conditions. Additionally, their flexibility allows for easy installation and repair, reducing downtime and maintenance costs. Moreover, monolithic refractories have enhanced chemical resistance, protecting against corrosive and reactive substances commonly found in iron and steel production. Overall, the use of monolithic refractories enhances productivity, extends equipment lifespan, and reduces operational costs in the iron and steel industry.
Q:How do monolithic refractories handle thermal expansion and contraction?
Monolithic refractories are designed to handle the challenges of thermal expansion and contraction. These materials are composed of a single solid structure, as opposed to the traditional brick or tile forms of refractories. This unique composition allows monolithic refractories to better accommodate the thermal stresses associated with temperature changes. One way that monolithic refractories handle thermal expansion and contraction is through their ability to withstand high temperatures. These materials are typically engineered to have a high melting point, allowing them to maintain their structural integrity even under extreme heat conditions. This property helps to prevent the refractory from cracking or disintegrating due to thermal expansion. In addition, monolithic refractories often contain a binder or bonding agent that helps to hold the refractory particles together. This binder can be formulated to have a certain degree of flexibility, allowing the material to expand and contract without cracking or breaking. This flexibility helps to absorb the stresses caused by thermal expansion and contraction, ensuring the longevity and performance of the refractory. Furthermore, monolithic refractories can be applied in a way that allows for expansion and contraction. These materials can be installed with joints or gaps between sections, which can accommodate the movement caused by temperature changes. This technique, known as joint design or expansion joint systems, allows the refractory to expand and contract without causing damage to the overall structure. Overall, monolithic refractories are designed to handle thermal expansion and contraction by withstanding high temperatures, incorporating flexible binders, and using joint design techniques. These properties enable them to maintain their structural integrity and performance in extreme heat conditions, making them a reliable choice for applications that require resistance to thermal stress.
Q:How do monolithic refractories resist chemical attacks from molten metals and slag?
Monolithic refractories are engineered to withstand chemical attacks caused by molten metals and slag. They possess various essential qualities that enable them to endure such harsh conditions. To begin with, monolithic refractories comprise top-notch materials with exceptional chemical resistance. These materials, including alumina, magnesia, and chrome, have a high melting point and remain stable even when exposed to extreme temperatures and corrosive substances. This chemical stability ensures that the refractory maintains its integrity and structural strength when in contact with molten metals and slag. Moreover, monolithic refractories have a compact and dense structure. This microstructure serves as a barrier, preventing molten metals and slag from penetrating the refractory material. By limiting the contact between the corrosive substances and the refractory, the dense structure reduces the likelihood of chemical reactions and erosion, thereby enhancing the refractory's resistance to chemical attacks. Additionally, monolithic refractories often contain additives and binders that enhance their chemical resistance. These additives form a protective layer on the refractory surface, acting as a shield against chemical attacks. They can also react with certain corrosive substances, forming stable compounds that further inhibit the penetration and corrosion of the refractory material. Furthermore, monolithic refractories are designed to have minimal porosity. This low porosity minimizes the absorption of molten metals and slag, preventing them from infiltrating the refractory and causing damage. By reducing the permeability of the material, the refractory can maintain its structural integrity and resist chemical attacks for extended periods. In conclusion, monolithic refractories withstand chemical attacks from molten metals and slag due to their high-quality materials, dense structure, additives, and low porosity. These combined properties enable the refractories to endure aggressive environments and maintain their performance and longevity in industrial applications.

1. Manufacturer Overview

Location
Year Established
Annual Output Value
Main Markets
Company Certifications

2. Manufacturer Certificates

a) Certification Name  
Range  
Reference  
Validity Period  

3. Manufacturer Capability

a)Trade Capacity  
Nearest Port
Export Percentage
No.of Employees in Trade Department
Language Spoken:
b)Factory Information  
Factory Size:
No. of Production Lines
Contract Manufacturing
Product Price Range

Send your message to us

This is not what you are looking for? Post Buying Request

Similar products

Hot products


Hot Searches

Related keywords