• Continue Casting Steel Billet Made by Blast Furnace System 1
  • Continue Casting Steel Billet Made by Blast Furnace System 2
Continue Casting Steel Billet Made by Blast Furnace

Continue Casting Steel Billet Made by Blast Furnace

Ref Price:
get latest price
Loading Port:
Tianjin
Payment Terms:
TT OR LC
Min Order Qty:
1000 m.t.
Supply Capability:
100000 m.t./month

Add to My Favorites

Follow us:


OKorder Service Pledge

Quality Product, Order Online Tracking, Timely Delivery

OKorder Financial Service

Credit Rating, Credit Services, Credit Purchasing

Continue Casting Steel Billet Made by Blast Furnace

 

1.Structure of  Continue Casting Steel Billet Made by Blast Furnace

 

Continue Casting Steel Bloom by Blast Furnace is the raw material of all kinds of steel mill. Billet section of square, round, flat, rectangular and abnormity, etc Several, mainly related to shape of rolled products. Simple rolled section steel, choose cross section of square billet or rectangular billet. rolling The sector products such as flat steel, Angle steel, select the rectangular billet or slab. Had better profiled billet when production beams, channels, and in rolling process Lines and improve the yield. The raw material of round billet is the production of seamless tube. 


2.Main Features of  Continue Casting Steel Billet Made by Blast Furnace

Continue Casting Steel Bloom by Blast Furnace section size should meet the requirements of rolling deformation and finished product quality, but also roll strength and biting condition of restrictions. General steel Billet section height H. And the roll diameter D The ratio of the ( namely H/D) Should be less than or equal to zero 0.5 . Length of steel billet by finishing temperature, Rolling time and the length of the product Or times ruler. When heated too long accident prone to bump the furnace wall of steel, too short, furnace bottom utilization rate is not high, influence the heating furnace production. For the production Choose a variety of steel and steel billet, should consider the affinities of billet, as far as possible in order to improve the productivity of the roughing mill, simplify the stock management of workshop.

 

3.  Continue Casting Steel Billet Made by Blast Furnace Images

 

 

 

Continue Casting Steel Billet Made by Blast Furnace

Continue Casting Steel Billet Made by Blast Furnace

 

 

 

4.  Continue Casting Steel Billet Made by Blast Furnace Specification

 Continue Casting Steel Bloom by Blast Furnace  rolled steel, after processing can be used for mechanical parts, forging parts, processing all kinds of steel, steel Q345B channel steel, wire rod is the role of the billet. Steel billet is used in the production of semi-finished products, generally cannot be used directly for the society. Steel billets and steel are strictly divided into standard, cannot decide to whether the business enterprise of the final product, and according to unified standards to perform the whole society. Typically, billet and the steel is relatively easy to distinguish, but for some steel billet, and have the same specification and same steel purposes (such as rolling tube billet), whether can be used for other industries, whether through steel processing process, whether through a finished product rolling mill processing to distinguish


 Mainly from the shape is divided into two kinds:Slab: cross section width and height of the ratio of the larger, mainly used for rolling plate.Billet: equal cross section width and height, or a huge difference, mainly used for rolling steel, wire rod.Material part of the standard:Range of thickness: 150-240 - mm + / - 5 mmThe width of the range: 880-1530 - mm + / - 20 mmLength: 3700-10000 - mm + / - 500 - mmCross-sectional size: 64 * 64;82 * 82;98 * 98;124 * 124;120 * 150;152 * 164;152 * 170 mm

5.FAQ of  Continue Casting Steel Billet Made by Blast Furnace

 

We have organized several common questions for our clientsmay help you sincerely 

 

①How we can recoginize the blast furnace and the efa quality?

If you see the surface only, not very easy to recognize, it is better you buy from CNBM and we have to keep the contract as we sign, it is more relieable.

 

②Could we get the original MTC from the steel mill?

Yes, you can.

 

③If we found any quality problem, how long you can settel that for us?

about 7-30days with SGS report.

 

Q: For example, screw plate (PU plate and manganese plate), carbon steel Primeton is what person rolling out?.
that in addition to the carbon and other elements, such as Cr, Mo etc., in which the carbon ratio below 30 for low alloy steel
Q: Can steel billets be used for marine applications?
Yes, steel billets can be used for marine applications. Steel billets are commonly used in the construction of ships, offshore structures, and marine equipment due to their high strength, durability, and corrosion resistance properties. They provide the necessary strength to withstand the harsh marine environment and can be shaped and welded to meet specific design requirements.
Q: How are steel billets shaped into other forms?
Steel billets are shaped into other forms through a process called hot rolling. Hot rolling involves passing the steel billet through a series of heated rollers that compress and shape the billet into the desired form. First, the steel billet is heated to a high temperature in a furnace. This heat treatment makes the steel more malleable and easier to shape. Once the billet reaches the desired temperature, it is fed into a rolling mill. In the rolling mill, the billet is passed through a series of rollers that apply pressure and force to shape the steel. These rollers can have various shapes and sizes depending on the desired outcome. As the billet passes through the rollers, it is gradually shaped into the desired form, such as sheets, bars, or beams. The rolling process not only shapes the steel but also improves its mechanical properties. It refines the grain structure, enhances the strength and toughness, and removes any internal defects. This makes the steel more suitable for various applications, such as construction, automotive, and machinery. After the hot rolling process, the steel is often further processed through cold rolling, which involves passing it through cold rollers to refine its surface finish and dimensions. Additionally, other secondary operations like cutting, bending, and welding may be performed to further shape the steel into the desired end product. Overall, hot rolling is a crucial process in shaping steel billets into other forms. It allows for the production of a wide range of steel products, each with its specific shape, size, and mechanical properties, meeting the diverse needs of industries worldwide.
Q: How are steel billets used in the manufacturing of agricultural equipment?
Steel billets are a vital component in the manufacturing process of agricultural equipment. They are essentially semi-finished steel products that serve as the raw material for various parts and components of agricultural machinery. When it comes to agricultural equipment manufacturing, one of the main purposes of steel billets is to construct the frame or chassis of the equipment. The frame provides the necessary structural integrity and support to endure the challenging conditions encountered in agricultural applications. Steel billets are commonly used due to their high strength, durability, and resistance to corrosion. These qualities are essential to withstand the heavy loads, vibrations, and exposure to harsh environments that agricultural machinery often faces. Moreover, steel billets are also utilized in producing other crucial components like axles, gears, shafts, and blades. These components are vital for the proper functioning and performance of agricultural equipment. Steel billets are preferred for these applications because of their machinability, allowing them to be easily shaped and formed into the specific specifications and dimensions required for each component. Furthermore, steel billets are employed in manufacturing attachments and implements commonly used in agricultural operations. For example, plows, harrows, cultivators, and seeders rely on steel billets to provide strength, durability, and resistance to wear and tear. These attachments often encounter demanding conditions and need to withstand the forces encountered during field operations. In summary, steel billets play a critical role in the manufacturing of agricultural equipment by providing the necessary strength, durability, and functionality required for these machines to perform effectively in the agricultural sector. The use of steel billets ensures that the agricultural equipment can withstand the harsh conditions of farming operations, resulting in increased productivity, efficiency, and longevity of the machinery.
Q: What are the different types of steel billet inspection techniques?
There are several different types of steel billet inspection techniques used in the industry. These techniques are employed to ensure the quality and integrity of the steel billets before they are further processed or used in manufacturing processes. Some of the commonly used inspection techniques include: 1. Visual Inspection: This is the most basic and commonly used technique where inspectors visually examine the steel billets for any surface defects, such as cracks, pits, or deformities. It is a quick and effective method for detecting obvious visual defects. 2. Dimensional Inspection: In this technique, the dimensions of the steel billet are measured using various tools, such as Vernier calipers or micrometers. This helps ensure that the billets meet the required dimensional specifications. 3. Ultrasonic Testing: Ultrasonic testing involves the use of high-frequency sound waves to detect internal defects or inconsistencies in the steel billets. This technique can identify defects like cracks, voids, or inclusions that may not be visible to the naked eye. 4. Magnetic Particle Inspection: This technique involves the application of magnetic fields to the steel billets and the use of iron particles or magnetic ink to identify surface and near-surface defects. It is particularly effective in detecting defects like cracks or discontinuities. 5. Eddy Current Testing: Eddy current testing utilizes electromagnetic induction to detect surface defects and measure the conductivity or thickness of the steel billets. It is a non-destructive technique that can identify defects like cracks, corrosion, or variations in material thickness. 6. Radiographic Testing: This technique involves the use of X-rays or gamma rays to inspect the internal structure of the steel billets. It can detect defects like inclusions, voids, or improper internal structure. 7. Dye Penetrant Inspection: Dye penetrant inspection is used to detect surface defects by applying a dye or fluorescent liquid to the steel billets. The dye seeps into any cracks or discontinuities, and excess dye is then wiped off, leaving only the dye trapped in the defects, which can be easily identified under UV light. These are some of the commonly used steel billet inspection techniques. Each technique has its own advantages and limitations, and the choice of technique depends on various factors such as the type and size of the billets, the level of defect detection required, and the budget constraints.
Q: What is the drop per minute of the billet temperature at 850?
Cold rolling is not considered. The initial rolling temperature (surface) of the billet is generally 1000-1150 degrees.
Q: What are the cost implications of using steel billets in manufacturing?
There are several cost implications associated with the use of steel billets in manufacturing. Firstly, one must consider the cost of the billets themselves. This cost can fluctuate depending on market demand, availability, and the grade of steel. Therefore, any changes in steel prices can directly affect manufacturing costs. Moreover, transportation and logistics costs must be taken into account. Steel billets are heavy and bulky, requiring specialized handling and transportation methods. This can result in higher shipping costs, especially if the manufacturing facility is far from the source of the billets. Additionally, the cost of processing and shaping the billets into the desired form for manufacturing needs to be considered. This includes expenses associated with cutting, welding, forging, and other necessary fabrication processes. The complexity of these processes and the required machinery can significantly impact the overall cost of using steel billets. Another cost implication is related to the quality of the billets. Inferior quality billets can lead to lower product quality and higher rejection rates, ultimately increasing manufacturing costs. Therefore, it is crucial to source steel billets from reputable suppliers to ensure consistent quality and minimize the risk of defects. Considering long-term costs, the durability and strength of steel make it an attractive choice for manufacturing. Steel is known for its longevity and resistance to wear and tear, which reduces the need for frequent replacements and repairs. This can result in long-term cost savings for manufacturers. Lastly, the environmental and sustainability aspects associated with using steel billets should be taken into account. Steel production is energy-intensive and has a significant carbon footprint. Manufacturers are increasingly being held accountable for their environmental impact, which can lead to additional costs in terms of compliance with regulations or implementing sustainable practices. In conclusion, the cost implications of using steel billets in manufacturing involve the price of the billets themselves, transportation costs, processing expenses, quality considerations, long-term durability, and sustainability factors. Analyzing these cost factors carefully is essential for manufacturers to make informed decisions and optimize their manufacturing processes.
Q: What are the disadvantages of using steel billets?
Some potential disadvantages of using steel billets include their high cost, the need for specialized equipment and processes to handle and shape them, and their relatively limited availability compared to other forms of steel. Additionally, steel billets can be susceptible to defects such as cracking or porosity, which may require additional quality control measures.
Q: What are the different international standards for steel billets?
Steel billets, which serve as raw materials for the production of various steel products, must comply with several international standards. Notable examples of these standards include: 1. ASTM A615/A615M: This standard specifies the characteristics of deformed carbon-steel bars used for reinforcing concrete. It also covers the requirements for billets utilized in the manufacturing process of these bars. 2. EN 10025: Of European origin, this standard outlines the technical delivery conditions for structural steel products. It encompasses a wide range of steel grades, including billets, which find application in construction and engineering. 3. JIS G3112: Hailing from Japan, this Industrial Standard defines the specifications for steel bars, including billets, used in concrete reinforcement. It guarantees the quality and performance of steel billets within the construction industry. 4. GB/T 699: A Chinese standard, this document establishes the technical requirements for high-quality carbon structural steel, including billets. It encompasses aspects such as chemical composition, mechanical properties, and heat treatment. 5. IS 2830: This Indian Standard outlines the specifications for carbon steel billets used in general engineering purposes. It encompasses requirements related to chemical composition, mechanical properties, and dimensional tolerances. By adhering to these international standards, industries across the globe can ensure the consistency, quality, and safety of steel billets. The adherence to such standards facilitates the uniformity and encourages global trade of steel products.
Q: What are the different types of steel billet reheating furnaces?
There are several types of steel billet reheating furnaces, including walking beam furnaces, pusher furnaces, rotary hearth furnaces, and roller hearth furnaces. Each type has its own advantages and uses, depending on the specific requirements of the steel production process.

Send your message to us

This is not what you are looking for? Post Buying Request

Similar products

Hot products


Hot Searches

Related keywords