Cold Drawn Die Steel,Tool Steel Bar 1.2510
- Loading Port:
- China main port
- Payment Terms:
- TT OR LC
- Min Order Qty:
- 30 m.t.
- Supply Capability:
- 10000 m.t./month
OKorder Service Pledge
OKorder Financial Service
You Might Also Like
Specification
Cold Drawn Die Steel,Tool Steel Bar 1.2510
Product information:
1.Cold working die steel.
2.Wiht highest hardness and abrasion resistance in the Cr12 and 9SiCr.
3.Low impact toughness,should avoid tempering at about 300°c.
4.should do the resonable structure .
Shape | Round | Diameter: 10mm~700mm |
Flat | Thickness: 20mm-400mm | |
Width: 60mm-600mm | ||
Heat treatment | Normalized ; Annealed ; Quenched ; tempered | |
Surface Condition | Black surface ; Grinded ; Machined | |
Delivery Condition | hot rolled ; cold drawn ; forged | |
Payment Terms | T/T; L/C | |
Trade Terms | FOB; CIF | |
Application | cold work die steel; hot work die steel; plastic die steel |
Product show:
Workshop show:
Our service:
-High manufacturing accuracy
-High strength
-Small inertia resistance
-Strong heat dissipation ability
-Good visual effect
-Reasonable price
Chose happens because of quality, then price, We can give you both.Additionally, we can also offer professional products inquiry, products knowledge train(for agents), smooth goods delivery, exellent customer solution proposals.Our service formula: good quality+good price+good service=customer's trust
SGS test is available, customer inspection before shipping is welcome, third party inspection is no problem.
If you need the sample, please feel free to let me know. Any question, we will contact you ASAP!
- Q: What are the different heat treatment processes used for special steel?
- There are several heat treatment processes used for special steel, including annealing, normalizing, quenching, tempering, and case hardening. Annealing involves heating the steel to a specific temperature and then slowly cooling it to soften it and improve its machinability. Normalizing is similar to annealing but involves cooling the steel in air instead of slowly. Quenching involves rapidly cooling the steel to increase its hardness, while tempering involves reheating the quenched steel to a lower temperature to reduce brittleness and improve toughness. Case hardening is a process where the outer layer of the steel is hardened while maintaining a softer core, enhancing wear resistance.
- Q: What are the typical mechanical properties of special steel?
- The mechanical properties of special steel can vary depending on its specific grade and composition. However, there are certain general characteristics that can be anticipated. Special steels are often designed to have enhanced properties compared to standard carbon steels, which makes them suitable for specific applications that require superior strength, hardness, or resistance to wear and corrosion. One important mechanical property of special steel is its high tensile strength. These steels are typically engineered to have higher strength levels than standard steels. As a result, they can withstand heavy loads and stresses without deforming or failing, making them ideal for industries like construction, automotive, and aerospace where structural integrity is crucial. Special steels also demonstrate excellent hardness, which measures a material's ability to resist permanent indentation or scratching. This property is often achieved through the addition of alloying elements and heat treatment processes that enhance the steel's ability to resist wear and abrasion. Consequently, special steels are commonly used in tools, cutting equipment, and machinery components subjected to severe wear conditions. Furthermore, special steel alloys can possess exceptional toughness, which refers to the material's ability to absorb energy and resist fracture under impact or sudden loading. This is particularly important in applications where impact resistance is vital, such as the manufacturing of heavy-duty machinery or structures subjected to dynamic loads. Additionally, special steels may exhibit improved corrosion resistance compared to standard steels. This is achieved by incorporating alloying elements like chromium, nickel, or molybdenum, which create a protective oxide layer on the steel's surface, preventing or slowing down the process of corrosion. Industries dealing with corrosive environments, such as marine, oil and gas, and chemical processing, highly value this property. In summary, special steel possesses typical mechanical properties such as high tensile strength, excellent hardness, exceptional toughness, and improved corrosion resistance. These properties allow special steels to excel in various applications where superior performance is required, making them essential in numerous industries worldwide.
- Q: How does special steel withstand high-velocity impacts?
- Due to its unique properties and composition, special steel possesses the capability to endure high-velocity impacts. A crucial factor contributing to this capability is its high strength and hardness, which allows it to withstand extreme forces without deforming or fracturing. Additionally, special steel often incorporates alloying elements like chromium, molybdenum, nickel, and vanadium, which enhance its exceptional toughness and resistance to impacts. Furthermore, special steel frequently undergoes heat treatment to improve its mechanical properties. This involves processes like quenching and tempering that modify the steel's microstructure, resulting in a refined and strengthened structure. This heat treatment also augments the steel's capacity to absorb and disperse energy during high-velocity impacts, thereby lowering the risk of failure. Moreover, special steel is frequently tailored with specific alloys and compositions to optimize its performance in specific applications. For instance, certain grades of steel are engineered specifically for armor applications, where they must endure high-velocity impacts from projectiles. These steels may incorporate additional elements like boron or titanium, further enhancing their ability to resist penetration and deformation under extreme loads. In conclusion, special steel's ability to withstand high-velocity impacts can be attributed to its high strength, hardness, toughness, and impact resistance. Its distinctive composition, heat treatment processes, and targeted design render it a dependable choice for applications where impact resistance is of utmost importance.
- Q: What are the properties of tungsten alloys?
- Tungsten alloys possess several notable properties, including exceptional hardness, high melting point, excellent corrosion resistance, and remarkable density. These alloys are also known for their exceptional strength, resistance to wear, and ability to retain their shape even under extreme temperatures. Furthermore, tungsten alloys exhibit good electrical and thermal conductivity, making them suitable for various applications in industries such as aerospace, automotive, and defense.
- Q: How does special steel behave under different types of loading conditions?
- Special steel behaves differently under different types of loading conditions. When subjected to tension, it stretches and elongates, but still maintains its strength. Under compression, it can withstand high pressures without deformation. Special steel also exhibits excellent resistance to bending, allowing it to maintain its shape under bending loads. Furthermore, it has high fatigue strength, making it suitable for applications involving cyclic or repetitive loading. Overall, special steel demonstrates superior mechanical properties and performance under various loading conditions.
- Q: Can special steel be used in the semiconductor manufacturing industry?
- Yes, special steel can be used in the semiconductor manufacturing industry. Special steel alloys, such as stainless steel and tool steel, are often used in the construction of semiconductor equipment and components. These steels are chosen for their high strength, corrosion resistance, and thermal stability, which are essential properties for withstanding the harsh environments and processes involved in semiconductor manufacturing. Additionally, special steel can be engineered to have low levels of contamination, making it suitable for applications where purity is crucial, such as in cleanroom environments.
- Q: How is corrosion-resistant stainless steel used in the production of marine equipment?
- Corrosion-resistant stainless steel is extensively used in the production of marine equipment due to its ability to withstand the harsh corrosive environment of saltwater. It is used for various applications such as shipbuilding, offshore structures, and marine components like propellers, valves, and fittings. The stainless steel's resistance to corrosion helps prevent rust and degradation, ensuring the longevity and durability of marine equipment even in challenging marine conditions.
- Q: How are aluminum alloys used in the automotive industry?
- Aluminum alloys are widely used in the automotive industry due to their lightweight yet durable properties. They are used in the construction of car bodies, engine components, wheels, suspension systems, and other critical parts. By using aluminum alloys, vehicles can achieve better fuel efficiency, improved performance, and reduced emissions. Additionally, these alloys offer better corrosion resistance, which enhances the lifespan and overall quality of automobiles.
- Q: How does special steel contribute to the hardness of products?
- Special steel contributes to the hardness of products through its unique composition and manufacturing process. It contains alloying elements such as chromium, tungsten, and manganese, which enhance its strength and resistance to wear and tear. The controlled heat treatment during production further refines the steel's microstructure, resulting in increased hardness. This hardness enables special steel to withstand high pressures, impacts, and abrasive forces, making it ideal for applications where durability and strength are crucial, such as in tools, machinery, and construction materials.
- Q: What are the applications of high-strength low-alloy (HSLA) steel?
- High-strength low-alloy (HSLA) steel has various applications in different industries. It is commonly used in the automotive industry for manufacturing lightweight and fuel-efficient vehicles. HSLA steel is also utilized in construction for building structures that require high strength and durability. Additionally, it finds applications in the manufacturing of heavy machinery and equipment, as well as in the production of pipelines and offshore platforms in the oil and gas industry.
Send your message to us
Cold Drawn Die Steel,Tool Steel Bar 1.2510
- Loading Port:
- China main port
- Payment Terms:
- TT OR LC
- Min Order Qty:
- 30 m.t.
- Supply Capability:
- 10000 m.t./month
OKorder Service Pledge
OKorder Financial Service
Similar products
Hot products
Hot Searches
Related keywords