• Round Steel Spring Bar 60Si2MnA System 1
  • Round Steel Spring Bar 60Si2MnA System 2
  • Round Steel Spring Bar 60Si2MnA System 3
Round Steel Spring Bar 60Si2MnA

Round Steel Spring Bar 60Si2MnA

Ref Price:
get latest price
Loading Port:
China Main Port
Payment Terms:
TT or LC
Min Order Qty:
50MT m.t.
Supply Capability:
600000TONS/YEAR m.t./month

Add to My Favorites

Follow us:


OKorder Service Pledge

Quality Product, Order Online Tracking, Timely Delivery

OKorder Financial Service

Credit Rating, Credit Services, Credit Purchasing

Spring Steel can be divided into two types. One is carbon spring steel, and other one is alloy spring steel.

Alloy spring steel is based on carbon spring steel, by adding one or more alloying elements to improve the mechanical properties, hardenability and other properties to meet the requirement for manufacturing all kinds of spring steel.

 

Specification of Round Steel Spring Bar:

-Material: 60Si2MnA

-Standard: GB

-Type: Spring Steel

 

Corresponding Steel Grade for Reference:

CHN, GB

JPN, JIS

GER, DIN

GBR, BS

60Si2MnA

SUP6/SUP7

60SiCr7

251H60

FRA, NF

USA, AISI/SAE

ISO

61SC7

H2600

61SiCr7

 

Chemical Composition:

C

Si

Mn

S

0.52~0.6

1.50~2.00

1.00~1.30

≤0.035

P

Cr

Ni

Cu

≤0.035

≤0.35

≤0.35

≤0.25

V

B

0.08~0.16

0.0005~0.0035

 

Mechanical Properties:

-Tensile Strength σb (MPa): ≥1372 (140)

-Yield Strength σs (MPa): ≥1225 (125)

-Elongation δ10(%): ≥5

-Percentage reduction of area: ψ (%): ≥30

-Hardness:

1, Hot rolled, ≤321HB

2, Cold drawn + Heat treatment: ≤321HB

 

Usage/Applications of Round Steel Spring Bar:

-60Si2MnA contains little alloying elements. Its hardenability is higher than 60Si2Mn. The decarburizing tendency is small and the prime cost is low.

-Products of this material are used as flat spring o spiral spring with diameter less than 30mm that bear a large load during the fabrication of trains, cars and tractors.

 

Packaging & Delivery of Round Steel Spring Bar:

-Packing Detail: The products can be packed in bundles by steel wires.

-Delivery Detail:

1, Delivery time: 30~45 working days after receive buyer’s T.T. or L/C.

2, Delivery status should be written in the contract. (Heat treatment or no)

 

Payment:

-Invoicing on theoretical weight or actual weight as customer’s request.

-FOB, CFR or CIF.

-Regular terms of payment:

1, 30% payment in advance, the remaining balance (70% payment) against the copy of B/L. 100% payment before shipment.

2, 30% payment in advance, the remaining balance (70% L/C) against the copy of B/L. 100% payment before shipment.

3, Negotiable.

 

Photos of Round Steel Spring Bar:

-Round Steel Spring Bar 1: 

Round Steel Spring Bar 60Si2MnA

-Round Steel Spring Bar 2: 

 Round Steel Spring Bar 60Si2MnA

-Round Steel Spring Bar in the factory: 

Round Steel Spring Bar 60Si2MnA

Q: Can special steel be used in the mining industry?
Yes, special steel can be used in the mining industry. Special steel is known for its high strength, durability, and resistance to wear and corrosion, making it suitable for various applications in mining such as drilling equipment, crushers, conveyor systems, and extraction machinery. Additionally, special steel can withstand harsh operating conditions and extreme temperatures commonly encountered in mining operations, making it a reliable and efficient choice for this industry.
Q: How does special steel contribute to the aerospace structural industry?
The aerospace structural industry relies heavily on special steel due to its various important attributes needed for building aircraft components. Firstly, special steel possesses exceptional strength and durability, enabling it to withstand the extreme conditions and stresses experienced during flight. This is particularly crucial for critical components like landing gear, engine parts, and wing structures that face high temperatures, pressure, and vibrations. Additionally, special steel exhibits excellent corrosion resistance, which is essential for ensuring the long-lasting and reliable nature of aerospace structures. Aircraft are constantly exposed to harsh environments such as high humidity, saltwater, and chemicals, which can cause corrosion and degradation if not adequately protected. Special steel helps prevent these issues, ensuring the aircraft's structural integrity throughout its lifespan. Moreover, special steel offers other desirable properties including heat resistance, fatigue resistance, and weldability. These characteristics make it suitable for a wide range of aerospace applications such as constructing fuselage frames, engine mounts, fasteners, and hydraulic systems. By utilizing special steel in these components, aerospace manufacturers can achieve lightweight designs without compromising strength and safety. Furthermore, special steel empowers engineers to push the boundaries of aircraft performance by facilitating the development of advanced technologies. For example, the use of special steel alloys in turbine blades allows for higher operating temperatures, improving engine efficiency and reducing fuel consumption. This contributes to the overall sustainability and environmental friendliness of the aerospace industry. In conclusion, special steel is an indispensable material in the aerospace structural industry as it provides the necessary strength, durability, corrosion resistance, and other essential properties required for constructing aircraft components. Its contribution enables the development of safer, more efficient, and technologically advanced aircraft, ultimately benefiting the aerospace industry as a whole.
Q: What are the main applications of special steel in the telecommunications sector?
Special steel is widely used in the telecommunications sector for various applications. One of the main uses is in the manufacturing of transmission towers and antennas, where high strength and corrosion resistance properties are crucial for ensuring stability and durability. Special steel is also utilized in the production of cables and wires, providing excellent conductivity and resistance to wear and tear. Additionally, special steel is employed in the fabrication of satellite communication equipment, providing the necessary strength and resilience to withstand harsh environmental conditions. Overall, special steel plays a vital role in the telecommunications sector by enabling the construction of reliable and high-performance infrastructure.
Q: How does special steel contribute to sustainable construction?
Special steel contributes to sustainable construction in several ways. Firstly, special steel is highly durable and has a longer lifespan compared to traditional building materials. This means that structures built with special steel require less maintenance and repairs over time, reducing the overall environmental impact. Secondly, special steel is often made from recycled materials, such as scrap metal, which helps to conserve natural resources and reduce waste. The recycling process also requires less energy compared to producing new steel, further reducing the carbon footprint. Additionally, special steel offers high strength-to-weight ratio, allowing for lighter and more efficient construction designs. This leads to reduced material consumption and transportation costs, as well as minimizing the load on the foundation and infrastructure. Lastly, special steel is highly resistant to corrosion and can withstand extreme weather conditions. This resilience ensures the longevity of the structures, reducing the need for replacements and minimizing construction waste. Overall, special steel's durability, recyclability, lightweight nature, and resistance to corrosion contribute significantly to sustainable construction practices by minimizing environmental impact, conserving resources, and promoting long-lasting structures.
Q: What are the different types of heat-resistant steel?
There are several different types of heat-resistant steel, including austenitic stainless steel, martensitic stainless steel, ferritic stainless steel, and nickel-based alloys.
Q: How does special steel contribute to the construction of bridges?
Special steel plays a crucial role in the construction of bridges by providing enhanced strength, durability, and resilience, thereby ensuring the structural integrity and safety of these vital infrastructure projects. One of the key benefits of special steel in bridge construction is its high tensile strength, which allows the material to withstand heavy loads and extreme weather conditions. This strength is particularly important in large-span bridges, where the steel must bear significant weight and resist forces such as wind, earthquakes, and traffic vibrations. Special steel also offers superior corrosion resistance, which is essential in bridges exposed to harsh environments, such as those near coastal areas where saltwater can be highly corrosive. By preventing or minimizing corrosion, the lifespan of the bridge is significantly extended, reducing maintenance and repair costs. Moreover, special steel can be fabricated to precise specifications, allowing for the creation of complex bridge designs and innovative structural solutions. This versatility enables engineers to design bridges that are not only functional but also aesthetically pleasing. In summary, special steel is a critical component in bridge construction due to its strength, durability, corrosion resistance, and versatility. Its use ensures the longevity, safety, and efficiency of bridges, ultimately benefiting the communities they serve.
Q: What are the advantages of using special steel?
Special steel offers several advantages over regular steel. Firstly, it has superior strength and hardness, making it more durable and resistant to wear and tear. This makes it ideal for applications that require high strength and toughness, such as in the manufacturing of tools, machinery, and automotive parts. Additionally, special steel has excellent corrosion resistance, which helps prolong the lifespan of products exposed to harsh environments or corrosive substances. Moreover, it exhibits better heat resistance, allowing it to withstand high temperatures without losing its strength or shape, making it suitable for use in the aerospace and energy industries. Lastly, special steel can be customized to meet specific requirements, allowing manufacturers to create components with precise dimensions and properties, enhancing overall performance and efficiency.
Q: How does special steel contribute to the overall strength and durability of structures?
Special steel contributes to the overall strength and durability of structures in several ways. Firstly, special steel is manufactured using specific alloying elements that enhance its mechanical properties, such as increased tensile strength and hardness. This makes it capable of withstanding higher loads and pressures, ensuring the structural integrity of the building or infrastructure. Moreover, special steel is known for its excellent corrosion resistance, which is crucial for structures exposed to harsh environmental conditions or in contact with corrosive substances. By preventing rust and degradation, special steel prolongs the lifespan of structures, reducing maintenance costs and the need for frequent repairs or replacements. Additionally, the unique properties of special steel allow for the creation of more streamlined and lightweight structures. Its high strength-to-weight ratio enables architects and engineers to design structures with thinner sections and reduced material usage without compromising strength. This not only saves costs but also minimizes the environmental impact associated with construction. Furthermore, special steel possesses exceptional toughness and impact resistance, making it highly resistant to fractures or buckling under extreme loads or dynamic forces. This property is particularly crucial for structures subjected to seismic events, heavy vibrations, or impacts, as it ensures the safety and stability of the building or infrastructure. In summary, special steel plays a vital role in enhancing the overall strength and durability of structures. Its unique mechanical properties, corrosion resistance, lightweight nature, and high toughness contribute to the longevity, safety, and cost-effectiveness of buildings and infrastructures.
Q: How is special steel used in the production of turbine shafts?
Special steel is used in the production of turbine shafts due to its high strength, durability, and resistance to corrosion and fatigue. The unique properties of special steel make it ideal for withstanding the extreme conditions and loads experienced by turbine shafts during operation, ensuring efficient and reliable power generation.
Q: What are the different methods for improving the corrosion resistance of special steel?
There are several methods for improving the corrosion resistance of special steel. 1. Alloying: One of the most common methods is to add alloying elements to the steel composition. These elements, such as chromium, nickel, and molybdenum, form a protective layer on the surface of the steel, preventing corrosion. Stainless steel, for example, contains a high amount of chromium, which forms a passive film that protects the steel from corrosive environments. 2. Surface treatments: Various surface treatments can be applied to special steel to enhance its corrosion resistance. These treatments include electroplating, hot-dip galvanizing, and chemical passivation. Electroplating involves coating the steel with a layer of metal, such as zinc or nickel, which acts as a sacrificial anode, protecting the steel from corrosion. Hot-dip galvanizing involves immersing the steel in molten zinc, forming a durable, corrosion-resistant coating. Chemical passivation involves treating the steel with a solution that removes surface impurities and forms a protective oxide layer. 3. Protective coatings: Applying protective coatings can significantly improve the corrosion resistance of special steel. Coatings such as paint, epoxy, or polyurethane can act as a barrier, preventing moisture and corrosive substances from coming into contact with the steel surface. These coatings can be applied by spray, dip, or powder coating methods. 4. Heat treatment: Heat treatment can modify the microstructure of special steel, improving its corrosion resistance. Processes such as annealing, quenching, and tempering can alter the steel's properties, making it more resistant to corrosion. Heat treatment can also relieve internal stresses, which can contribute to corrosion. 5. Environmental control: Controlling the environment in which the special steel is used can also help improve its corrosion resistance. This includes measures such as maintaining proper humidity levels, controlling pH, avoiding exposure to corrosive chemicals, and implementing effective ventilation systems. By minimizing the exposure of special steel to corrosive elements, its corrosion resistance can be enhanced. Overall, a combination of these methods can be employed to improve the corrosion resistance of special steel, ensuring its longevity and performance in corrosive environments.
ORIGIN,a well-known enterprise specializing in the production and sales of Spring steel and aluminum powder.

1. Manufacturer Overview

Location Jiangsu, China
Year Established 2003
Annual Output Value Above US$ 30 Million
Main Markets Asia-Pacific; Middle east
Company Certifications

2. Manufacturer Certificates

a) Certification Name  
Range  
Reference  
Validity Period  

3. Manufacturer Capability

a) Trade Capacity
Nearest Port Shanghai.
Export Percentage 20% - 30%
No.of Employees in Trade Department 10-20 People
Language Spoken: English; Chinese
b) Factory Information
Factory Size: Above 100,000 square meters
No. of Production Lines 2
Contract Manufacturing OEM Service Offered;
Product Price Range Average

Send your message to us

This is not what you are looking for? Post Buying Request

Similar products

Hot products


Hot Searches

Related keywords