3Cr2MnNiMo Tool Steel Special Steel Alloy Steel
- Loading Port:
- China main port
- Payment Terms:
- TT OR LC
- Min Order Qty:
- 25 m.t.
- Supply Capability:
- 10000 m.t./month
OKorder Service Pledge
OKorder Financial Service
You Might Also Like
Specification
Chemical Composition(GB)%
C | Si | Mn | Cr | Ni | Mo | P | S |
0.32-0.40 | 0.20-0.40 | 1.10-1.50 | 1.70-2.00 | 0.85-1.10 | 0.25-0.40 | ≤0.030 | ≤0.030 |
Standard
GB | ASSAB | DIN | ISO |
3Cr2MnNiMo | 718 | 1.2738 | 40CrMnNiMo8-6-4 |
Available Size
Rolled plate | 12-90mm×610mm×L |
Heat Treatment
Processing | Temperature ℃ | Hardness |
Anneal | 690-710 | ≤220HB |
Quenching | 830-870 | 48-52HRC |
Tempering | 580-650 | 28-35HRC |
Characterstics
Characteristics | |||||
1.High hardening ability | |||||
2.Excellent polishing performance and smoothness |
Applications: Suitable for large size mirror dies,automobile tail lights,domestic electrical applicances,etc
1, Your advantages?
professional products inquiry, products knowledge train (for agents), smooth goods delivery, excellent customer solution proposale
2, Test & Certificate?
SGS test is available, customer inspection before shipping is welcome, third party inspection is no problem
3, Payment Terms?
30% TT as deposit and 70% before delivery.
Irrevocable L/C at sight.
4, Trading Terms?
EXW, FOB, CIF, FFR, CNF
6, After-sale Service?
We provides the services and support you need for every step of our cooperation. We're the business partner you can trust.
For any problem, please kindly contact us at any your convenient time.
We'll reply you in our first priority within 24 hours.
- Q: How is special steel tested for quality and durability?
- Special steel undergoes a series of rigorous processes and tests to assess its quality and durability. These tests are carefully designed to guarantee that the steel meets the necessary standards and can withstand different conditions and applications. One widely used method for testing special steel is the tensile strength test. This test measures the maximum level of stress that the steel can endure before breaking or deforming. To conduct this test, a sample of the steel is subjected to a pulling force until it reaches its breaking point. The outcomes of this test determine the steel's ability to resist external forces and its overall strength. Another crucial test is the hardness test, which determines the steel's durability. This test involves assessing the steel's resistance to indentation or scratching. A sample of the steel is pressed against a hard surface, and the depth of the indentation is measured. The steel's hardness indicates its resistance to wear and deformation. Apart from mechanical tests, special steel is also subjected to various chemical and metallurgical tests. These tests help determine the steel's chemical composition and microstructure, which are vital factors in ensuring its quality and durability. Spectroscopic analysis is used to identify the steel's exact chemical composition, while metallography is employed to examine the steel's microstructure and identify any impurities or defects. Furthermore, non-destructive testing methods are used to evaluate the steel's internal structure without causing any damage. These methods include ultrasonic testing, magnetic particle inspection, and radiographic testing. Ultrasonic testing employs high-frequency sound waves to detect internal flaws or defects in the steel. Magnetic particle inspection uses magnetic fields to identify surface cracks or discontinuities. Radiographic testing, on the other hand, uses X-rays or gamma rays to examine the internal structure and identify any defects that may compromise the steel's quality and durability. Overall, the testing process for special steel encompasses mechanical, chemical, metallurgical, and non-destructive testing methods. Through these tests, manufacturers can ensure that the steel meets the necessary standards and can perform reliably in various applications, ensuring its quality and durability.
- Q: Can special steel be used for medical applications?
- Yes, special steel can be used for medical applications. It is often used for surgical instruments, implants, and medical devices due to its high strength, corrosion resistance, and biocompatibility.
- Q: How is special steel used in the production of turbine blades?
- Special steel is used in the production of turbine blades due to its exceptional properties such as high strength, corrosion resistance, and heat resistance. These blades must withstand extreme conditions, including high temperatures and pressures, as well as rotational forces. Special steel provides the necessary strength and durability to ensure the blades can effectively convert kinetic energy into mechanical power.
- Q: What are the different coating and plating options for special steel?
- There are various coating and plating options available for special steel, depending on the desired outcome and application. Some common options include electroplating with metals like nickel, zinc, or chrome for enhanced corrosion resistance, as well as hot-dip galvanizing to provide a thick layer of zinc coating. Other options include powder coating, which offers durability and a wide range of colors, and PVD (Physical Vapor Deposition) coating, which provides a thin, protective layer using vaporized materials like titanium or chromium. Additionally, specialized coatings like Teflon or ceramic coatings can be applied for increased non-stick properties or heat resistance. Ultimately, the choice of coating or plating depends on the specific requirements and performance expectations for the special steel.
- Q: What are the different galvanizing techniques used for special steel?
- There are several galvanizing techniques used for special steel, including hot-dip galvanizing, electro-galvanizing, and mechanical galvanizing. Hot-dip galvanizing involves immersing the steel in a bath of molten zinc, creating a thick, durable coating. Electro-galvanizing, on the other hand, uses an electrical current to deposit a thin layer of zinc onto the steel surface. Mechanical galvanizing involves tumbling the steel in a zinc powder and glass bead mixture, which adheres to the surface through friction. Each technique has its own advantages and is used depending on the specific requirements of the application.
- Q: What are the different magnetic grades of special steel?
- The different magnetic grades of special steel include ferritic, martensitic, austenitic, and duplex stainless steels.
- Q: How does the addition of nickel enhance the properties of special steel?
- The addition of nickel to special steel enhances its properties in several ways. Firstly, nickel increases the strength of steel, making it more durable and resistant to deformation. This is especially important in applications where the steel will be subjected to high temperatures or heavy loads. Additionally, nickel improves the corrosion resistance of steel. It forms a protective oxide layer on the surface of the steel, preventing it from rusting or corroding when exposed to moisture or harsh chemicals. This is particularly valuable in industries such as marine, aerospace, and chemical processing, where steel is frequently exposed to corrosive environments. Furthermore, nickel improves the toughness of steel, meaning that it can withstand impact or sudden changes in temperature without fracturing or cracking. This makes it suitable for applications that require high resistance to shock or vibration, such as in construction, automotive, or machinery manufacturing. Moreover, the addition of nickel enhances the heat resistance of steel. Nickel increases the steel's ability to retain its strength and shape at high temperatures, making it suitable for applications in high-temperature environments, such as in power generation, oil and gas, or furnace systems. In summary, the addition of nickel to special steel enhances its strength, corrosion resistance, toughness, and heat resistance. These improved properties make nickel-enhanced steel highly desirable in a wide range of industries and applications, where durability, reliability, and performance under challenging conditions are paramount.
- Q: Can special steel be used in food processing applications?
- Yes, special steel can be used in food processing applications. Special steel, such as stainless steel, is commonly used in the food industry due to its excellent corrosion resistance, hygienic properties, and durability. It is safe for food contact, easy to clean, and does not react with acidic or alkaline substances.
- Q: What are the common challenges in forging special steel?
- Forging special steel poses several common challenges that manufacturers and engineers must address in order to achieve desired outcomes. One of the primary challenges in forging special steel is maintaining precise temperature control throughout the process. Special steels often have specific heat treatment requirements, and any deviation from the recommended temperature range can adversely affect the final properties of the material. Achieving and sustaining the right temperature is crucial to ensure desired mechanical properties like strength, hardness, and toughness. Another challenge in forging special steel is controlling the cooling rate during quenching. Quenching is a critical step in the heat treatment process that helps to achieve the desired hardness and strength in special steels. However, rapid cooling can lead to the formation of undesirable microstructures or even cracking. Therefore, carefully managing the cooling rate is essential to avoid these issues and ensure optimal material properties. Additionally, shaping special steels through forging can be challenging due to their high strength and hardness. These materials are often more difficult to deform compared to regular steels, requiring higher forging pressures and specialized equipment. The resistance to deformation can lead to increased wear on the forging dies, requiring frequent maintenance and replacement. Furthermore, special steels may contain alloying elements that can affect their forgeability. Some alloying elements can promote grain growth, which can reduce the mechanical properties of the material. Finding the right balance of alloying elements and optimizing the forging process parameters is crucial to achieve the desired microstructure and properties in the final product. Lastly, ensuring consistency and repeatability in the forging process can be a challenge. Special steels are often produced in smaller quantities or for specific applications, making it important to maintain process control and quality assurance. Proper documentation, monitoring, and quality control measures need to be implemented to ensure that the forged special steel meets the desired specifications and performance requirements. Overall, forging special steel requires careful attention to temperature control, cooling rate during quenching, shaping difficulties, alloying elements, and maintaining consistency. Addressing these challenges through proper process control and optimization is crucial to obtain high-quality special steel products with the desired mechanical properties and performance characteristics.
- Q: Can special steel be used in the packaging industry?
- Yes, special steel can be used in the packaging industry. Special steel, such as stainless steel, offers excellent durability, corrosion resistance, and strength, making it suitable for various packaging applications. It can be used to manufacture packaging containers, machinery, and equipment, providing a reliable and long-lasting solution for packaging needs.
Send your message to us
3Cr2MnNiMo Tool Steel Special Steel Alloy Steel
- Loading Port:
- China main port
- Payment Terms:
- TT OR LC
- Min Order Qty:
- 25 m.t.
- Supply Capability:
- 10000 m.t./month
OKorder Service Pledge
OKorder Financial Service
Similar products
Hot products
Hot Searches
Related keywords