• Steel Rebar Production Line System 1
  • Steel Rebar Production Line System 2
  • Steel Rebar Production Line System 3
  • Steel Rebar Production Line System 4
  • Steel Rebar Production Line System 5
  • Steel Rebar Production Line System 6
Steel Rebar Production Line

Steel Rebar Production Line

Ref Price:
get latest price
Loading Port:
Tianjin
Payment Terms:
TT OR LC
Min Order Qty:
150 m.t.
Supply Capability:
500000 m.t./month

Add to My Favorites

Follow us:


OKorder Service Pledge

Quality Product, Order Online Tracking, Timely Delivery

OKorder Financial Service

Credit Rating, Credit Services, Credit Purchasing

Specification

Type:
Carbon Steel
Shape:
Steel Round Bar

Steel Rebar Production Line


Description of Steel Rebar Production Line

1, Diameter: 5.5mm-10mm Steel Rebar Production Line

                       10m- 40mm Steel Rebar Production Line

2, Length:  6m, 9m, 12m or customized

3, Standard: GB, ASTM, AISI, SAE, DIN, JIS, EN

                    OEM technology - send detailed technical parameters for accurate quotation.

2, Produce Process: smelt iron - EAF smelt billet - ESR smelt billet - 

                                  hot rolled or forged to get the steel round bar and plate

3, Heat Treatment: annealing, normalizing, tempering, quenching

4, Surface Treatment: Black

5, Quality Assurance: We accept third party inspection for all orders. 

     You can ask testing organizations such as SGS, BV, etc. to test our products before shipping.

 

Chemical Composition of Steel Rebar Production Line

Grade

Technical data of the original chemical composition(%)

Reinforcing steel bar HRB335

C

Mn

Si

S

P

B

≤0.25

≤1.60

≤0.80

≤0.045

≤0.045

>0.0008

Physics Capability

Yield Strength(N/cm2)

Tensile Strength(N/cm2)

Elongation(%)

≥ 335

≥490

≥16

Reinforcing steel bar HRB400

C

Mn

Si

S

P

B

≤0.25

≤0.16

≤0.80

≤0.045

≤0.045

0.04-0.12

Physics Capability

Yield Strength(N/cm2)

Tensile Strength(N/cm2)

Elongation(%)

≥ 400

≥ 570

≥ 14


Products Show of Steel Rebar Production Line

Astm 615 Bs4449 B500B Deformed Steel Rebars



Company Information

CNBM International Corporation is the most important trading platform of CNBM group.

Whith its advantages, CNBM International are mainly concentrate on Cement, Glass, Iron and Steel, Ceramics industries and devotes herself for supplying high qulity series of refractories as well as technical consultancies and logistics solutions.

Astm 615 Bs4449 B500B Deformed Steel RebarsAstm 615 Bs4449 B500B Deformed Steel Rebars 


F A Q

1, Your advantages?

     professional products inquiry, products knowledge train (for agents), smooth goods delivery, excellent customer solution proposale

2, Test & Certificate?

      SGS test is available, customer inspection before shipping is welcome, third party inspection is no problem

3,  Factory or Trading Company?

      CNBM is a trading company but we have so many protocol factories and CNBM works as a trading department of these factories. Also CNBM is the holding company of many factories.

4, Payment Terms?

    30% TT as deposit and 70% before delivery.

    Irrevocable L/C at sight.

5, Trading Terms?

    EXW, FOB, CIF, FFR, CNF

6, After-sale Service?

     CNBM provides the services and support you need for every step of our cooperation. We're the business partner you can trust.

     For any problem, please kindly contact us at any your convenient time.

We'll reply you in our first priority within 24 hours.

Q:How does special steel contribute to reducing energy consumption?
Special steel contributes to reducing energy consumption in several ways. Firstly, special steel is known for its high strength and durability, allowing it to be used in the construction of lightweight structures. This helps in reducing the overall weight of vehicles, machinery, and buildings, resulting in lower energy requirements for their operation and transportation. Additionally, special steel is used in the manufacturing of energy-efficient appliances and equipment, such as turbines and generators, which optimize energy conversion and minimize energy losses. Furthermore, special steel is often used in the production of renewable energy systems like wind turbines and solar panels, enabling the efficient generation of clean energy. Overall, the unique properties of special steel help in achieving energy efficiency goals and promoting sustainable practices.
Q:Can special steel be used for making aerospace engine components?
Yes, special steel can be used for making aerospace engine components. Special steel alloys, such as stainless steel and nickel-based alloys, are often utilized in the aerospace industry due to their high strength, corrosion resistance, and ability to withstand extreme temperatures and pressures. These properties make special steel an ideal choice for critical engine parts like turbine blades, heat exchangers, and exhaust systems, ensuring optimal performance and safety in aerospace applications.
Q:What are the main characteristics of heat-resistant steel forgings?
High-temperature applications can benefit from the use of heat-resistant steel forgings due to their distinct characteristics. Firstly, these forgings possess exceptional resistance to oxidation and corrosion, enabling them to maintain their mechanical properties even under elevated temperatures. This resistance is achieved by incorporating alloying elements such as chromium, nickel, and molybdenum, which form a protective oxide layer on the steel's surface. Secondly, heat-resistant steel forgings demonstrate remarkable strength and toughness when exposed to high temperatures. This is crucial for applications that subject the material to mechanical stress and thermal cycling, such as gas turbines, power plants, and aerospace engines. The combination of high strength and toughness ensures that the forgings can endure harsh operating conditions without deformation or failure. Another significant characteristic of heat-resistant steel forgings is their ability to retain hardness and dimensional stability even after prolonged exposure to high temperatures. This is accomplished through meticulous alloying and heat treatment processes, optimizing the steel's microstructure. As a result, the material possesses a fine grain structure and high uniformity, enhancing its resistance to thermal fatigue and creep. Moreover, heat-resistant steel forgings exhibit good thermal conductivity, facilitating efficient heat transfer and dissipation. This is particularly important in applications where heat generation needs effective management to prevent overheating and damage to surrounding components. Lastly, heat-resistant steel forgings can be easily machined and fabricated into intricate shapes, making them versatile and suitable for various applications. They can be forged, machined, and welded without significant loss of mechanical properties, making them ideal for manufacturing components with complex designs and high precision requirements. In conclusion, the main characteristics of heat-resistant steel forgings include excellent resistance to oxidation and corrosion, high strength and toughness at high temperatures, dimensional stability and hardness retention, good thermal conductivity, and ease of machining and fabrication. These characteristics make heat-resistant steel forgings indispensable in industries that require reliable and durable materials in extreme heat conditions.
Q:What are the most common alloys used in special steel?
The most common alloys used in special steel are stainless steel, high-speed steel, tool steel, and carbon steel.
Q:What are the different surface finishing methods used for special steel?
There are several surface finishing methods used for special steel, including electroplating, powder coating, anodizing, painting, and passivation. These methods are employed to enhance the appearance, corrosion resistance, durability, and overall performance of the steel.
Q:Classification of special steel products
Carbon structural steels are normally used directly under heat supply without heat treatment. The mass fraction of Q195, Q215, Q235 are usually of low carbon steel, good welding performance, good plasticity and toughness, a certain strength, often rolled into a sheet, steel, welded steel pipe, used for bridges, buildings and general manufacturing rivet, screw and nut parts etc.. Q255 and Q275 mass fraction of carbon steel is slightly high, high strength, good plasticity and toughness, can be welded steel, steel rolling, usually forming and plate structure and simple manufacturing machinery, connecting rod, gear coupling, pins and other parts. Plain carbon steel high carbon steel is basically contains alloy elements, the carbon content in the range of 0.65% ~ 1.35%, the production of low cost, easy to obtain raw materials, good machinability, after treatment can obtain high hardness and high wear resistance, so the steel is widely used to manufacture various. Cutting tool, mold, measuring tools.But the red hardness difference of this kind of steel, that is, when the working temperature is greater than 250 degrees, the hardness and wear resistance of steel will decline rapidly, and lose their ability to work. In addition, if carbon tools steel is made into larger parts, it is difficult to harden, and deformation and crack are easy to occur. This kind of steel must ensure both chemical composition and mechanical properties. The number is two digits by the average mass fraction of carbon steel in the 000 fraction (W C * 10000). For example, steel 45 shows the average mass fraction of carbon in steel is 0.45%; 08 steel indicates the average mass fraction of carbon in steel is 0.08%.
Q:How does special steel ensure product reliability?
Product reliability is enhanced by the use of special steel, which is specifically designed and manufactured to possess superior qualities. One of the key factors contributing to its reliability is its exceptional strength and durability, allowing it to withstand high levels of stress, pressure, and temperature. This ensures reliable performance even in challenging conditions. Additionally, special steel offers excellent resistance to corrosion, wear, and fatigue. This is achieved through the addition of various alloying elements and meticulous heat treatment processes. By minimizing the risk of degradation and failure, the reliability of the product is further enhanced. Furthermore, special steel is known for its exceptional dimensional stability and accuracy. It maintains its shape and size under different operating conditions, reducing the possibility of dimensional changes that could affect overall performance and reliability. Another aspect that contributes to the reliability of special steel is its consistent and uniform composition. The manufacturing process ensures a homogeneous and controlled structure, resulting in predictable and reliable mechanical properties. This allows designers and engineers to accurately predict the behavior and performance of the steel, thereby increasing the reliability of the final product. Moreover, special steel undergoes stringent quality control measures throughout the manufacturing process to ensure it meets or exceeds industry standards and specifications. By adhering to these strict quality standards, special steel manufacturers can guarantee a high level of product reliability. In conclusion, special steel offers exceptional strength, durability, resistance to corrosion and wear, dimensional stability, uniform composition, and strict quality control measures, all of which contribute to the reliable performance of products made from special steel. Therefore, it is the preferred choice in industries where reliability is of utmost importance.
Q:How is wear-resistant tool steel used in the production of cutting tools?
Wear-resistant tool steel is commonly used in the production of cutting tools due to its high hardness and resistance to wear. This steel is able to withstand the abrasive forces and high temperatures generated during cutting operations, resulting in longer tool life and improved cutting performance. The wear-resistant tool steel is typically used to manufacture various cutting tools such as drills, milling cutters, saw blades, and lathe tools, ensuring durability and efficiency in metalworking and machining processes.
Q:What are the different methods of surface shot blasting for special steel?
Special steel can be subjected to various surface shot blasting techniques. Among the most commonly employed methods are: 1. Wheel blasting: Utilizing a rapidly spinning wheel embedded with abrasive particles, this technique eliminates impurities and imperfections from the surface of the special steel. 2. Air blasting: By propelling abrasive particles onto the special steel surface using compressed air, this method achieves a thorough cleaning and prepares the surface for subsequent treatment or coating. 3. Wet blasting: This approach involves blending abrasive particles with water and spraying the resulting mixture onto the special steel surface. The inclusion of water helps manage dust and heat generated during the blasting process, rendering it suitable for delicate or sensitive steel surfaces. 4. Vacuum blasting: By incorporating a vacuum system alongside abrasive particles, this technique effectively eliminates both particles and contaminants from the special steel surface. It proves particularly valuable for removing paint or coatings. 5. Shot peening: Employed as a specialized variant of shot blasting, shot peening enhances the strength and fatigue resistance of special steel. It entails bombarding the surface with small spherical particles, generating compressive stresses that bolster the steel's durability. Each of these methods offers distinct advantages and is suitable for different types of special steel and surface conditions. The selection of the appropriate technique hinges upon factors like desired surface finish, contamination levels, and specific steel application requirements.
Q:What is the role of boron in special steel alloys?
Boron plays a crucial role in special steel alloys, particularly in enhancing their mechanical properties and overall performance. One of the primary functions of boron is as a hardenability agent, meaning it improves the hardness and strength of the steel. This is achieved through the formation of boride particles, which act as strengthening agents within the microstructure. Additionally, boron aids in the refinement of the grain structure of steel, resulting in improved toughness and resistance to cracking. It promotes the formation of fine-grained microstructures, which in turn increase the steel's ability to withstand high temperatures, pressure, and wear. Moreover, boron assists in the solidification process of steel, reducing the risk of hot cracking during casting or welding. It lowers the melting point of steel, allowing for better fluidity and improved flowability during manufacturing processes. Furthermore, boron can also enhance the machinability of steel alloys, making them easier to work with and reducing tool wear. Overall, the addition of boron to special steel alloys significantly contributes to their strength, hardness, toughness, and resistance to various forms of degradation. Its role is vital in optimizing the performance and durability of these alloys in demanding applications such as automotive components, aerospace structures, and industrial machinery.

1. Manufacturer Overview

Location
Year Established
Annual Output Value
Main Markets
Company Certifications

2. Manufacturer Certificates

a) Certification Name  
Range  
Reference  
Validity Period  

3. Manufacturer Capability

a)Trade Capacity  
Nearest Port
Export Percentage
No.of Employees in Trade Department
Language Spoken:
b)Factory Information  
Factory Size:
No. of Production Lines
Contract Manufacturing
Product Price Range

Send your message to us

This is not what you are looking for? Post Buying Request

Similar products

Hot products


Hot Searches

Related keywords