Steel Billet made in China with High quality
- Loading Port:
- Tianjin
- Payment Terms:
- TT OR LC
- Min Order Qty:
- 1000 m.t.
- Supply Capability:
- 17642 m.t./month
OKorder Service Pledge
OKorder Financial Service
You Might Also Like
Specification
Steel billet :
Steel billet(ingot) by cogging or breakdown of semi-finished products, is the raw material of all kinds of steel mill. Billet section of square, round, flat, rectangular
and abnormity of several kinds of, mainly related to the shape of rolled products.
Billets, or ingots (as they sometimes referred to), are not of practical use until they have been formed into more
functional shapes and sizes. While they have already been put in the furnace, they still require a series of shaping
and molding procedures such as hot and cold working, milling and cutting before they are sold in hardware stores,
or used for different applications. The unformed billets, however, can be used in striking currency such as coins and
as reserves, similar to gold bars.
Gade:
Standard | C(%) | Mn(%) | S(%) | P(%) | Si(%) |
Q195 | ≤0.12 | ≤0.50 | ≤0.040 | ≤0.035 | ≤0.30 |
Q235 | ≤0.20 | ≤1.40 | ≤0.045 | ≤0.045 | ≤0.35 |
Q275 | ≤0.22 | ≤1.50 | ≤0.045 | ≤0.045 | ≤0.35 |
20MnSi | 0.17-0.25 | 1.2-1.6 | ≤ 0.050 | ≤ 0.050 | 0.40-0.80 |
3SP | 0.14-0.22 | 0.40-0.85 | ≤ 0.050 | ≤ 0.040 | 0.05-0.15 |
5SP | 0.28-0.37 | 0.50-1.00 | ≤ 0.050 | ≤ 0.040 | 0.15-0.30 |
Other Specifications
Squar Tolerance: ±4
Length Tolerance: +100mm
Romboidity/Difference Diagonals: no more than 0.7%
Camber: no more than 1.5%(%)
Twist: no more than 3 degrees per 1 meter length
Our Advantage
* Professional Personnel of Steel Trading
* Strong Steel Industry Background
* Conveniently Geographic Location
Our Commitment
* Sincere, Practical, Efficient and Developing
* High Quality Steel Production
* Competitive Price and Timely Delivery
Packing :
Within 30 days
1.Standard export package
2.In bundles with steel strips
3.As the requirements of the customers
FAQ:
Q: How to get quotation?
A: When we receive your detailed enquiry, we will set the best price based on standard,
steel grade, outer diameter, wall thickness, quantity, country.
And we will send quotation to your mailbox.
Q:How to guarantee the quality of the products?
A:We have established the international advanced quality management system,every link from raw material
to final product we have strict quality test;We resolutely put an end to unqualified products flowing into the market.
At the same time, we will provide necessary follow-up service assurance.
Q:How long can we receive the product after purchase?
A :In the purchase of product within three working days, We will arrange the factory delivery as soon as possible.
The pecific time of receiving is related to the state and position of customers.
- Q: What are the common sizes and shapes of steel billets?
- To cater to the diverse needs of different industries, steel billets are typically manufactured in various sizes and shapes. The most common sizes range from 100mm to 200mm in width and 100mm to 300mm in height. However, it should be noted that these dimensions can vary based on the specific requirements of the end-user or the steel manufacturer. Regarding shapes, rectangular and square shapes are commonly produced. Rectangular billets have flat and smooth surfaces with four right angles, while square billets have equal sides with four right angles as well. These shapes are preferred because they facilitate easier handling, transportation, and further processing of the steel billets. Furthermore, steel billets can also be produced in non-traditional shapes such as round, hexagonal, or octagonal, depending on the intended application. These unique geometries are often utilized in specialized industries like automotive or aerospace manufacturing to meet specific design requirements. It is important to mention that the sizes and shapes of steel billets can vary across different regions and industries, as each may have their own specific standards and preferences. Therefore, manufacturers and end-users should communicate and align their requirements to ensure the production of steel billets that meet their respective needs.
- Q: What are the main alloying elements used in steel billet production?
- Steel billet production utilizes various alloying elements, such as carbon, manganese, silicon, and chromium. The primary alloying element, carbon, plays a crucial role in augmenting the steel's strength and hardness. Meanwhile, manganese is incorporated to enhance the steel's toughness and hardenability. Silicon is introduced to fortify the steel against corrosion and oxidation. Lastly, chromium is employed to heighten the steel's hardness, corrosion resistance, and wear resistance. Throughout the production process, these alloying elements are meticulously regulated and added to the steel to attain the desired properties and attributes in the ultimate steel billets.
- Q: What are the different surface treatments for improved fatigue resistance in steel billets?
- Some of the different surface treatments that can improve fatigue resistance in steel billets include shot peening, nitriding, and induction hardening. Shot peening involves bombarding the surface of the billets with small steel shots, which creates compressive stresses that help to increase fatigue strength. Nitriding is a process where the steel billets are exposed to nitrogen gas at high temperatures, forming a hard nitride layer on the surface which improves both hardness and fatigue resistance. Induction hardening involves heating the surface of the billets using high-frequency currents and then rapidly quenching it, resulting in a hardened surface layer that enhances fatigue resistance.
- Q: What are the different surface treatments applied to stainless steel billets?
- Stainless steel billets can undergo several surface treatments to enhance their appearance and improve their resistance to corrosion. Some commonly used surface treatments include: 1. Pickling: By immersing the billets in an acid bath, like nitric or hydrofluoric acid, any scale or oxide layers formed during the manufacturing process can be removed. Pickling restores the stainless steel's original finish and provides a clean and smooth surface. 2. Passivation: This chemical process is employed to boost the corrosion resistance of stainless steel. By immersing the billets in an oxidizing solution, usually a nitric acid bath, any embedded iron or contaminants are eliminated from the surface. Passivation creates a thin oxide layer on the stainless steel surface, which aids in preventing corrosion and maintaining the integrity of the material. 3. Electropolishing: This electrochemical process involves removing a thin layer of material from the billet's surface. By passing an electric current through the billets while they are submerged in an electrolyte solution, the surface becomes smoother and any defects or impurities are eliminated. Electropolishing not only enhances the appearance of stainless steel but also improves its corrosion resistance and facilitates cleaning. 4. Grinding and polishing: These mechanical processes utilize abrasive materials to eliminate imperfections or irregularities from the stainless steel billets' surface. Grinding is achieved using a coarse abrasive wheel, while polishing involves progressively finer abrasives to achieve a smooth and reflective surface. These processes can produce various finishes, ranging from a brushed or satin finish to a mirror-like polished finish. These different surface treatments can be utilized individually or in combination to achieve the desired appearance and performance characteristics for stainless steel billets in diverse applications.
- Q: What are the advantages of using steel billets in the manufacturing process?
- There are several advantages of using steel billets in the manufacturing process. Firstly, steel billets have a consistent composition and uniformity, which ensures better quality control during production. Secondly, steel billets can be easily molded into various shapes and sizes, allowing for flexibility in design and manufacturing. Additionally, steel billets possess high strength and durability, making them suitable for applications that require robust materials. Moreover, steel billets can be recycled and reused, making them an environmentally friendly choice. Overall, the use of steel billets enhances the efficiency, reliability, and sustainability of the manufacturing process.
- Q: Can steel billets be used for making kitchen utensils?
- Kitchen utensils can indeed be made using steel billets, which serve as raw materials that can be molded and crafted into various products. These steel billets must possess certain qualities like resistance to corrosion, durability, and the ability to withstand heat if they are to be used for kitchen utensils. The process of creating these utensils involves melting and casting the steel billets, which are then forged into the desired shapes and sizes. This allows for the production of knives, spoons, forks, cookware, and other utensils. To improve performance and appearance, the steel used in kitchen utensils is often treated and finished. Ultimately, steel billets play a crucial role in the manufacturing process of kitchen utensils by providing the necessary raw material needed to create durable and functional tools for cooking and food preparation.
- Q: What are the market trends and growth prospects for steel billets?
- Steel billets play a vital role in the steel industry as they serve as the primary material for various downstream applications. The growth and market trends of steel billets are greatly influenced by factors like global economic growth, infrastructure development, and the demand for steel in different sectors. One notable market trend for steel billets is the increasing demand from the construction industry. With the rapid urbanization and infrastructure development in emerging economies, there is a rising need for steel-intensive construction projects. Steel billets are extensively used in the construction of bridges, buildings, and other infrastructure projects, which drives the demand for this product. Another market trend is the growing demand for steel billets in the automotive industry. The automotive sector is a major consumer of steel, and as the industry shifts towards lightweight and high-strength materials, the demand for steel billets is expected to increase. Steel billets are used in the production of various automotive components, including engine parts, chassis, and suspension systems. Furthermore, the increasing focus on renewable energy sources such as wind and solar power is expected to drive the demand for steel billets. Steel components are required for wind turbines and solar panel structures, and as renewable energy projects expand globally, the demand for steel billets is likely to experience significant growth. In terms of growth prospects, the steel billets market is expected to witness steady growth in the coming years. The Asia-Pacific region, particularly China and India, is projected to dominate the market due to their robust construction and infrastructure sectors. These countries have extensive urbanization projects and ongoing infrastructure development plans, which will contribute to the demand for steel billets. Additionally, the recovery of the global economy after the COVID-19 pandemic is expected to boost the demand for steel billets. As economies bounce back and industrial activities regain momentum, the demand for steel in various sectors, including construction, automotive, and energy, will increase, positively impacting the steel billets market. However, it is important to note that market trends and growth prospects for steel billets can be influenced by factors like fluctuations in raw material prices, trade policies, and environmental regulations. Furthermore, the increasing adoption of alternative materials such as aluminum and composites in certain applications may pose a challenge to the growth of the steel billets market. In conclusion, the market trends for steel billets are driven by the demand from the construction, automotive, and renewable energy sectors. The growth prospects for this market are promising, particularly in the Asia-Pacific region as economies recover from the pandemic and infrastructure projects gain momentum. Nevertheless, challenges such as fluctuations in raw material prices and competition from alternative materials should also be taken into consideration.
- Q: How are steel billets used in the production of pipes?
- Steel billets are melted and then cast into a solid form, which is then rolled or forged to form pipes of various sizes and shapes. These billets serve as the raw material for the pipe production process and are essential in ensuring the strength, durability, and structural integrity of the pipes.
- Q: What are the advantages of using steel billets in construction?
- There are several advantages of using steel billets in construction: 1. Strength and Durability: Steel billets are known for their high strength and durability, making them ideal for construction purposes. They can withstand heavy loads and extreme weather conditions, ensuring the longevity and stability of the structure. 2. Versatility: Steel billets can be molded and shaped into various forms, allowing for flexibility in design and construction. This versatility makes them suitable for a wide range of applications, from beams and columns to framing and foundations. 3. Cost-effectiveness: Despite the initial cost of steel billets being higher than other construction materials, their long-term benefits outweigh the investment. Steel is low maintenance, doesn't require frequent repairs or replacements, and offers excellent fire resistance, reducing insurance costs. 4. Sustainability: Steel is a highly sustainable material due to its recyclability. Steel billets can be recycled and reused without losing their properties, reducing the demand for virgin materials and minimizing environmental impact. 5. Speed of construction: Steel billets are pre-fabricated, meaning they are manufactured off-site and then transported to the construction site. This significantly reduces construction time and allows for faster completion of projects. 6. Resistance to pests and rot: Unlike wood, steel billets are not susceptible to termites, pests, or rot. This eliminates the need for chemical treatments or regular inspections, saving both time and money. 7. Design flexibility: Steel billets offer a wide range of design possibilities, enabling architects and engineers to create unique and aesthetically pleasing structures. The ability to span large distances without the need for additional support columns allows for open floor plans and creative architectural designs. In summary, the advantages of using steel billets in construction include their strength, durability, versatility, cost-effectiveness, sustainability, speed of construction, resistance to pests and rot, and design flexibility. These factors make steel billets an excellent choice for various construction projects, ensuring sturdy and long-lasting structures.
- Q: What are the different types of steel billet rolling techniques?
- The manufacturing process utilizes various steel billet rolling techniques to shape the steel into desired forms and dimensions. Among the commonly employed techniques are the following: 1. Hot rolling: This technique, widely used, involves heating the steel billet to high temperatures and passing it through a series of rolling mills. By reducing thickness and increasing length, hot rolling achieves the desired shape. 2. Cold rolling: Steel billets are rolled at room temperature in this technique. It yields steel with precise dimensions and a smooth surface finish. It is commonly used for producing steel sheets, strips, and bars. 3. Ring rolling: Seamless steel rings are produced using this technique. The steel billet is heated and then rolled between two rotating rolls that gradually shape the billet into a ring. Bearings, gears, and flanges are commonly produced using ring rolling. 4. Continuous casting and rolling: In this technique, molten steel is continuously cast into billets, which are then directly rolled into desired shapes. It eliminates the need for separate casting and rolling processes, making it a more efficient and cost-effective technique. 5. Cross-rolling: This technique is employed to produce steel billets with non-uniform cross-sections. The billet is rolled between two rolls with different profiles, resulting in a billet of the desired shape. 6. Skew rolling: Skew rolling is specifically used to produce steel balls utilized in various industries like mining and cement production. The steel billet is rolled between two rotating rolls at an angle, creating a helical motion that forms the ball shape. These examples represent only a fraction of the available steel billet rolling techniques. Each technique offers unique advantages and is selected based on the desired final product and manufacturing requirements.
Send your message to us
Steel Billet made in China with High quality
- Loading Port:
- Tianjin
- Payment Terms:
- TT OR LC
- Min Order Qty:
- 1000 m.t.
- Supply Capability:
- 17642 m.t./month
OKorder Service Pledge
OKorder Financial Service
Similar products
Hot products
Hot Searches
Related keywords