• Alloyed Continue Casting Steel Billet by Blast Furnace According to the Standard of YB2011-83 System 1
  • Alloyed Continue Casting Steel Billet by Blast Furnace According to the Standard of YB2011-83 System 2
Alloyed Continue Casting Steel Billet by Blast Furnace According to the Standard of YB2011-83

Alloyed Continue Casting Steel Billet by Blast Furnace According to the Standard of YB2011-83

Ref Price:
get latest price
Loading Port:
Tianjin
Payment Terms:
TT OR LC
Min Order Qty:
1000 m.t.
Supply Capability:
100000 m.t./month

Add to My Favorites

Follow us:


OKorder Service Pledge

Quality Product, Order Online Tracking, Timely Delivery

OKorder Financial Service

Credit Rating, Credit Services, Credit Purchasing

 

 

Alloyed Continue Casting Steel Billet by Blast Furnace According to the Standard of YB2011-83

 

1.Structure of  Alloyed Continue Casting Steel Billet by Blast Furnace According to the Standard of YB2011-83

 

Alloyed Continue Casting Steel Billet by Blast Furnace According to the Standard of YB2011-83 is the raw material of all kinds of steel mill. Billet section of square, round, flat, rectangular and abnormity, etc Several, mainly related to shape of rolled products. Simple rolled section steel, choose cross section of square billet or rectangular billet. rolling The sector products such as flat steel, Angle steel, select the rectangular billet or slab. Had better profiled billet when production beams, channels, and in rolling process Lines and improve the yield. The raw material of round billet is the production of seamless tube. 


2.Main Features of  Alloyed Continue Casting Steel Billet by Blast Furnace According to the Standard of YB2011-83

Steel Bloom Manufactured by Blast Furnace section size should meet the requirements of rolling deformation and finished product quality, but also roll strength and biting condition of restrictions. General steel Billet section height H. And the roll diameter D The ratio of the ( namely H/D) Should be less than or equal to zero 0.5 . Length of steel billet by finishing temperature, Rolling time and the length of the product Or times ruler. When heated too long accident prone to bump the furnace wall of steel, too short, furnace bottom utilization rate is not high, influence the heating furnace production. For the production Choose a variety of steel and steel billet, should consider the affinities of billet, as far as possible in order to improve the productivity of the roughing mill, simplify the stock management of workshop.

 

3.  Alloyed Continue Casting Steel Billet by Blast Furnace According to the Standard of YB2011-83 Images

 

 

Alloyed Continue Casting Steel Billet by Blast Furnace According to the Standard of YB2011-83

Alloyed Continue Casting Steel Billet by Blast Furnace According to the Standard of YB2011-83

 

 

 

 

 

4.  Alloyed Continue Casting Steel Billet by Blast Furnace According to the Standard of YB2011-83 Specification

 Steel Bloom Manufactured by Blast Furnace  rolled steel, after processing can be used for mechanical parts, forging parts, processing all kinds of steel, steel Q345B channel steel, wire rod is the role of the billet. Steel billet is used in the production of semi-finished products, generally cannot be used directly for the society. Steel billets and steel are strictly divided into standard, cannot decide to whether the business enterprise of the final product, and according to unified standards to perform the whole society. Typically, billet and the steel is relatively easy to distinguish, but for some steel billet, and have the same specification and same steel purposes (such as rolling tube billet), whether can be used for other industries, whether through steel processing process, whether through a finished product rolling mill processing to distinguish

Material standard The editor Range of thickness: 150-240 - mm + / - 5 mm width range: 880-1530 - mm + / - 20 mm Length: 3700-10000 - mm + / - 500 - mm Cross-sectional size: 64 * 64; 82 * 82; 98 * 98; 124 * 124; 120 * 150; 152 * 164; 152 * 170 mm Length: 9000 mm Section of tolerance: billet: 1.0 + / - 2.0-1.0 + / - 1.0 mm slab: width: + / - 2.0 mm thickness: + / - 3.0 mm The length tolerance: + / - 200 mm Section diagonal tolerance: 3.5-8.0 MM Billet section size protrusions requirements: < 1242 mm, do not allow; > = 1242 mm, < = 2 mm 1242 mm, < = 3 mm Beheading (shear) extension deformation: < 1242 mm billet: no control; The slab: < = 15 mm Surface tilt: no more than billet section 0.1 Bending: every 1 m length is not more than 10 mm The distortion: length < = 5 m, < = 11. ; The length of the < = 7.5 M, < = 5. Material % 3 sp/PS chemical composition: C Mn Si S P

 

5.FAQ of  Alloyed Continue Casting Steel Billet by Blast Furnace According to the Standard of YB2011-83

 

We have organized several common questions for our clients,may help you sincerely: 

 

①How about your company?

A world class manufacturer & supplier of castings forging in carbon steel and alloy steel,is one of the large-scale professional investment casting production bases in China,consisting of both casting foundry forging and machining factory. Annually more than 8000 tons Precision casting and forging parts are exported to markets in Europe,America and Japan. OEM casting and forging service available according to customer’s requirements.

 

②How to guarantee the quality of the products?

Crack in continuous casting billet surface shall not be visible to the naked eye, overlapping, skull patch, or scarring, inclusion and depth
 
 
Height is greater than the
3 mm
Scratches, indentation, scratch, pores, wrinkles, cold splash, handle, bump, pits
 
 
And depth is greater than the
2 mm
The hairline.Casting billet cross-section can not have shrinkage cavity, subcutaneous bubble.
Crack in continuous casting billet surface shall not be visible to the naked eye, overlapping, skull patch, or scarring, inclusion and depth
 
 
Height is greater than the
3 mm
Scratches, indentation, scratch, pores, wrinkles, cold splash, handle, bump, pits
 
 
And depth is greater than the
2 mm
The hairline.Casting billet cross-section can not have shrinkage cavity, subcutaneous bubble.

 

③How to check the appearance?

Appearance standard  2.1And the difference between the lengths of the continuous casting billet in cross section of diagonal should conform to the table2The provisions of the.  2.2And the degree of curvature of continuous casting billet per meter shall not be greater than20 mm,The total bending shall not be greater than the total length2%.  2.3, casting billet are allowed drum belly, but height shall not exceed the casting billet length allowed is deviation.  2.4Oblique cutting, casting billet end shall not be greater than20 mm. 2.5Casting billet end caused by shear deformation, spread shall not be greater than the length10%.  2.6, casting billet can not have apparent reverse..

 

Q:How are steel billets used in the manufacturing of mining equipment?
Steel billets are an essential component in the manufacturing of mining equipment. These billets are essentially semi-finished steel products that are formed into a specific shape and size that is required for the equipment being produced. In the case of mining equipment, steel billets are used as the raw material for various parts such as gears, shafts, and structural components. The billets are heated and then subjected to a process called forging, where they are shaped and molded into the desired form using heavy machinery and high pressure. The strength and durability of steel make it an ideal material for mining equipment due to the harsh and demanding conditions that these machines operate in. Steel billets offer excellent mechanical properties, such as high tensile strength and resistance to wear and corrosion, which are crucial for the equipment to withstand the heavy loads and abrasive environments encountered in mining operations. Once the steel billets are forged into the required shape, they undergo further processes such as machining, heat treatment, and surface finishing to achieve the final specifications and desired quality standards. These processes ensure that the mining equipment meets the necessary performance criteria and can withstand the rigorous demands of mining operations. Overall, steel billets play a crucial role in the manufacturing of mining equipment by providing a strong and reliable foundation for the various components. Their use ensures that the equipment can withstand the extreme conditions of mining operations, ultimately contributing to the efficiency, safety, and productivity of these vital industries.
Q:What is the chemical composition of a typical steel billet?
A typical steel billet, which is a semi-finished product used in the production of various steel products, is primarily composed of iron and carbon. The specific chemical composition can vary depending on the grade and intended application of the steel billet. In addition to iron and carbon, other elements such as manganese, silicon, sulfur, and phosphorus may be present in varying amounts. These elements are added to impart specific properties to the steel, such as increased strength, improved machinability, or enhanced corrosion resistance. The exact composition of a steel billet is carefully controlled during the manufacturing process to ensure the desired mechanical and chemical properties are achieved.
Q:Can steel billets be used for artistic purposes?
Yes, steel billets can certainly be used for artistic purposes. While steel billets are typically used as raw material in industrial applications such as construction or manufacturing, they can also be transformed into beautiful works of art. Artists often use steel billets to create sculptures, decorative pieces, or even functional objects like furniture. The versatility of steel allows artists to mold and shape it into various forms, while its strength and durability ensure the longevity of the artwork. Moreover, the metallic appearance of steel can add a modern and industrial aesthetic to artistic creations. Overall, steel billets offer artists a unique medium to express their creativity and create visually stunning pieces.
Q:What are the factors that affect the quality of steel billets?
There are several factors that can affect the quality of steel billets, which are semi-finished metal products used in the production of various steel products. Some of the key factors include: 1. Raw materials: The quality of steel billets is heavily influenced by the quality of the raw materials used in their production. The composition of the steel, such as the percentage of carbon and other alloying elements, plays a crucial role in determining the final quality of the billets. 2. Manufacturing process: The manufacturing process used to produce steel billets can significantly impact their quality. Factors such as the temperature, pressure, and duration of the heating and cooling processes, as well as the rate of solidification, can affect the internal structure and mechanical properties of the billets. 3. Quality control measures: The implementation of effective quality control measures throughout the production process is essential for ensuring the quality of steel billets. Regular inspections, testing, and monitoring of critical parameters, such as dimensions, surface finish, and chemical composition, help identify any deviations from the desired specifications and allow for corrective actions to be taken. 4. Equipment and technology: The quality of the equipment and technology used in the production of steel billets can have a significant impact on their quality. Advanced machinery and techniques, such as continuous casting or vacuum degassing, can improve the homogeneity and cleanliness of the billets, resulting in higher-quality products. 5. Environmental conditions: Environmental factors, such as temperature, humidity, and cleanliness of the production environment, can also affect the quality of steel billets. Contaminants, such as dust, pollutants, or moisture, can adversely impact the surface finish and overall quality of the billets. 6. Handling and storage: Proper handling and storage practices are crucial for maintaining the quality of steel billets. Any mishandling, such as dropping or rough handling, can lead to surface defects or internal damage. Similarly, improper storage conditions, such as exposure to moisture or corrosive substances, can deteriorate the quality of the billets. In conclusion, the quality of steel billets is influenced by a combination of factors, including the raw materials, manufacturing process, quality control measures, equipment and technology, environmental conditions, and handling and storage practices. By carefully considering and optimizing these factors, steel manufacturers can produce high-quality billets that meet the desired specifications and customer requirements.
Q:What is the average production cost of steel billets?
The average production cost of steel billets can vary depending on various factors such as raw material prices, energy costs, labor expenses, and market conditions. It is best to consult industry reports or reach out to steel manufacturers for the most accurate and up-to-date information on the average production cost of steel billets.
Q:What is the difference between hot-rolled and cold-rolled steel billets?
The main difference between hot-rolled and cold-rolled steel billets lies in the manufacturing process. Hot-rolled steel billets are formed by heating the steel to a high temperature and then rolling it while it is still hot, resulting in a rougher and less precise surface finish. On the other hand, cold-rolled steel billets are formed by cooling the steel and then rolling it at room temperature, which produces a smoother and more precise surface finish. This difference in manufacturing process also affects the mechanical properties of the steel, with hot-rolled steel generally having higher tensile strength but lower dimensional accuracy compared to cold-rolled steel.
Q:What is the typical impact strength of a steel billet?
The impact strength of a steel billet typically varies based on the grade and composition of the steel. Generally, steel billets have a high level of toughness and can endure significant impact forces without fracturing or breaking. This is because steel possesses inherent strength and ductility. Nevertheless, it is important to acknowledge that the impact strength of a steel billet can be further improved through various methods like heat treatment or alloying. These techniques assist in enhancing the material's resistance to impact, making it more durable and suitable for demanding applications. Essentially, to determine the exact impact strength of a steel billet, it is crucial to consider the specific grade and composition. Different steel grades are designed for different purposes, and consequently, their impact strength can vary. Therefore, it is advisable to consult the manufacturer or refer to the material specifications to obtain accurate and detailed information regarding the typical impact strength of a particular steel billet.
Q:Can steel billets be used in the production of construction machinery?
Construction machinery can indeed be produced using steel billets. Steel billets, which are partially finished steel products, can be further processed into various shapes and sizes, including components for construction machinery. These billets can be hot-rolled or cold-rolled to create different types of steel products commonly used in construction, such as bars, rods, plates, or sheets. Steel's exceptional strength and durability make it an excellent material for construction machinery, as it can withstand heavy loads, resist corrosion, and provide structural integrity. Consequently, steel billets play a vital role as raw materials in the manufacture of construction machinery.
Q:How are steel billets used in the production of wire rods and bars?
Wire rods and bars rely on steel billets as a vital element in their production. These semi-finished metal products act as the raw material for manufacturing diverse steel goods. To initiate the production process, steel billets are subjected to high temperatures in a reheat furnace until they achieve the desired rolling temperature. Once heated, the billets are passed through a sequence of rolling mills for hot rolling. During hot rolling, the steel billets are gradually transformed into wire rods or bars by repeatedly passing them through a set of rollers. This procedure reduces the billet's cross-sectional area and elongates it, resulting in the desired shape and dimensions of the wire rods or bars. Following the initial rolling, the wire rods or bars may undergo additional processes such as cooling, surface treatment, and further shaping or cutting, depending on the specific requirements of the end product. These supplementary steps enhance the mechanical properties and surface finish of the wire rods or bars. Once processed, the wire rods or bars find application across a wide range of industries. Wire rods, for instance, are commonly employed in wire production, nails, fencing, and various reinforcement materials. Bars, on the other hand, are often utilized in construction, manufacturing machinery, automotive components, and other structural applications. In conclusion, steel billets play a pivotal role in wire rod and bar production. They are heated and molded through the hot rolling process, resulting in the desired dimensions and properties of the final product. These wire rods and bars are then utilized in diverse industries for various applications, contributing to the overall advancement and functionality of numerous products and structures.
Q:What are the main factors affecting the corrosion resistance of steel billets?
The main factors affecting the corrosion resistance of steel billets are the composition of the steel, the presence of impurities, the surface condition, and the surrounding environment. Firstly, the composition of the steel plays a crucial role in its corrosion resistance. Stainless steels, for example, contain a high amount of chromium and other alloying elements that form a protective oxide layer on the surface, thereby providing excellent corrosion resistance. On the other hand, carbon steels have a lower resistance to corrosion due to their higher carbon content and lack of alloying elements. Secondly, the presence of impurities in the steel can significantly impact its corrosion resistance. Inclusions, such as sulfur, phosphorous, and non-metallic inclusions, can act as initiation sites for corrosion, leading to localized corrosion and reduced overall resistance. Therefore, controlling the presence and distribution of impurities during the production of steel billets is essential for enhancing corrosion resistance. Moreover, the surface condition of the steel billets plays a vital role in their corrosion resistance. A smooth and clean surface promotes the formation of a protective oxide layer that acts as a barrier against corrosive substances. Conversely, rough or contaminated surfaces can lead to accelerated corrosion due to increased surface area and potential for localized corrosion. Lastly, the surrounding environment greatly influences the corrosion resistance of steel billets. Factors such as humidity, temperature, pH, and the presence of corrosive substances like acids, salts, or pollutants can accelerate corrosion. For instance, steel billets exposed to high humidity or corrosive chemicals are more susceptible to corrosion than those in dry or less corrosive environments. In summary, the corrosion resistance of steel billets is influenced by the composition of the steel, the presence of impurities, the surface condition, and the surrounding environment. It is crucial to consider these factors during the production and handling of steel billets to ensure their long-term durability and resistance to corrosion.

1. Manufacturer Overview

Location
Year Established
Annual Output Value
Main Markets
Company Certifications

2. Manufacturer Certificates

a) Certification Name  
Range  
Reference  
Validity Period  

3. Manufacturer Capability

a)Trade Capacity  
Nearest Port
Export Percentage
No.of Employees in Trade Department
Language Spoken:
b)Factory Information  
Factory Size:
No. of Production Lines
Contract Manufacturing
Product Price Range

Send your message to us

This is not what you are looking for? Post Buying Request

Similar products

New products

Hot products


Hot Searches

Related keywords