• Special Steel Carbon Steel Round Bar JIS S10C System 1
  • Special Steel Carbon Steel Round Bar JIS S10C System 2
  • Special Steel Carbon Steel Round Bar JIS S10C System 3
Special Steel Carbon Steel Round Bar JIS S10C

Special Steel Carbon Steel Round Bar JIS S10C

Ref Price:
get latest price
Loading Port:
China main port
Payment Terms:
TT OR LC
Min Order Qty:
30 m.t.
Supply Capability:
10000 m.t./month

Add to My Favorites

Follow us:


OKorder Service Pledge

Quality Product, Order Online Tracking, Timely Delivery

OKorder Financial Service

Credit Rating, Credit Services, Credit Purchasing

Specification

Type:
Carbon Steel,Spring Steel,Bearing Steel,Gear Steel,Deformed Steel,Stainless Steel,Alloy Steel
Shape:
Steel Coil,Steel Sheet,Steel Wire Rod,Steel Flat Bar,Steel Square Bar,Steel Angle,Steel Round Bar,Steel Billets
Technique:
Hot Rolled,Cold Rolled,Cold Drawn,ERW,Forged,Saw,Extruded,EFW,Spring
Surface Treatment:
Galvanized,Coated,Copper Coated,Color Coated,Oiled,Dry,Chromed Passivation,Polished,Bright,Black,PVDF Coated
Certification:
UL,ISO,SGS,BV,IBR,RoHS,CE,API,BSI

Product Information

1 Grade Comparison:

GB

ASTM

JIS

DIN

10#

SAE1010/AISI1010

S10C

C10 (1.0214)

2 Chemical Composition:

C

Si

Mn

P

S

Cr

Ni

Cu

0.08-0.13

0.15-0.35

0.30-0.60

≤0.03

≤0.03

≤0.20

≤0.25

≤0.25

3 Brief Introduction: 

Dimension

13-350mm

Length

2-13m or as per your request

Delivery condition

Hot rolled

Heat Treatment

Normalizing, Annealing, Quenching

Packing

Standard seaworthy packing or according to your requirements

4 Mechanical Property: 

Yield Strength (MPa)

≥205

Tensile Strength (MPa)

≥335

Elongation (%)

≥31

Hardness (HB)

≤137

Reduction in Area (%)

≥55

 

Product Show

Special Steel Carbon Steel Round Bar JIS S10C

Workshop Show

Special Steel Carbon Steel Round Bar JIS S10C

Shipping 

1. FedEx/DHL/UPS/TNT for samples, Door-to-Door;

2. By Air or by Sea for batch goods, for FCL; Airport/ Port receiving;

3. Customers specifying freight forwarders or negotiable shipping methods!

Delivery Time: 3-7 days for samples; 5-25 days for batch goods.

Payment Terms

1.Payment: T/T, L/C, Western Union, MoneyGram,PayPal; 30% deposits; 70% balance before delivery.

2.MOQ: 1pcs

3.Warranty : 3 years

4.Package Informations: 1) EXPORT, In 20 feet (GW 25 ton) or 40 feet Container (GW 25 ton)

                                        2)as customer's requirement

Why choose us? 

(1) The leading exporter in China special steel industry.       

(2) Large stocks for various sizes, fast delivery date.       

(3) Good business relationship with China famous factories.       

(4) More than 7 years steel exporting experience.       

(5) Good after-sales service guarantee. 


Q:What are the main factors affecting the machinability of special steel?
The machinability of special steel, which refers to its ability to be easily cut, shaped, and formed, is influenced by several key factors. 1. Alloy Composition: The chemical composition of special steel plays a crucial role in its machinability. Elements such as carbon, chromium, nickel, and molybdenum can significantly affect the material's hardness, toughness, and cutting properties. Higher carbon content, for example, can increase the hardness of steel, making it more difficult to machine. 2. Hardness: The hardness of special steel is a critical factor in determining its machinability. Harder steels require more cutting force and generate more heat during machining, which can lead to increased tool wear and reduced efficiency. Softer steels, on the other hand, are generally easier to machine but may result in lower tool life. 3. Heat Treatment: The heat treatment process used on special steel can greatly impact its machinability. Heat treatments such as annealing, tempering, or quenching can alter the steel's microstructure and mechanical properties, affecting how it responds to cutting forces. Properly heat-treated steel can improve machinability by reducing hardness and increasing toughness. 4. Grain Size: The size and distribution of grains within the steel also affect its machinability. Fine-grained steel tends to have improved machinability compared to coarse-grained steel, as smaller grains offer more uniform cutting conditions and reduce the risk of tool damage. 5. Cutting Speed and Feed Rate: Machining parameters, including cutting speed and feed rate, directly impact the machinability of special steel. Higher cutting speeds can increase tool wear and generate excessive heat, affecting the surface finish and dimensional accuracy. Similarly, incorrect feed rates can cause chip formation problems, leading to poor machinability. 6. Cutting Tool Selection: The choice of cutting tool material and geometry is critical in achieving optimal machinability. Different tool materials, such as carbide or high-speed steel, have varying wear resistance and cutting properties. The tool geometry, including rake angle and clearance angle, also affects chip formation, cutting forces, and heat generation. 7. Lubrication and Cooling: Adequate lubrication and cooling during machining are vital to enhance machinability. Lubricants or coolants help reduce friction and heat, prolong tool life, and improve chip evacuation. They also prevent workpiece deformation and improve surface finish. Considering these factors, it is essential to carefully select the appropriate special steel grade, optimize machining parameters, and use suitable cutting tools and lubrication to achieve the desired machinability and maximize productivity.
Q:What are the different oil and gas grades of special steel?
There are several different oil and gas grades of special steel, including but not limited to API 5CT, API 5L, and ASTM A106. These grades are specifically designed to meet the requirements and demands of the oil and gas industry, ensuring high strength, corrosion resistance, and durability in harsh environments.
Q:How does special steel contribute to the energy sector?
Special steel plays a critical role in the energy sector, contributing significantly to its efficiency, reliability, and safety. Firstly, special steel is used in the construction of pipelines and storage tanks, which are crucial components of the oil and gas industry. These pipelines need to withstand high pressures, extreme temperatures, and corrosive environments, and special steel provides the necessary strength and resistance to ensure their integrity and prevent leakage. In addition, special steel is utilized in the manufacturing of turbine blades and other components in power generation plants. These plants require materials that can withstand the high temperatures and pressures generated by the combustion of fossil fuels or the use of nuclear energy. Special steel's heat-resistant properties make it ideal for these applications, improving the overall efficiency and longevity of power plants. Furthermore, special steel is used in the production of wind turbines, which are rapidly becoming an essential source of renewable energy. The blades, tower structures, and gearboxes of wind turbines are subjected to significant stress and strain, and special steel provides the necessary strength and durability to withstand these conditions. By using special steel, wind turbines can operate reliably and efficiently, contributing to the growth of clean energy. Moreover, the energy sector relies on special steel for its infrastructure, such as transmission towers and substations. These structures need to support heavy loads and withstand extreme weather conditions while maintaining electrical conductivity. Special steel's high strength and corrosion resistance make it a suitable material for these applications, ensuring the reliable transmission and distribution of electricity. Overall, special steel plays a crucial role in the energy sector by providing the necessary strength, durability, and resistance to extreme conditions. Its use in pipelines, power generation plants, wind turbines, and infrastructure improves the efficiency, reliability, and safety of the energy sector, facilitating the production and distribution of both conventional and renewable energy sources.
Q:How does special steel resist wear and tear?
Special steel resists wear and tear due to its unique composition and manufacturing process. It is made with a higher percentage of alloying elements such as chromium, nickel, and molybdenum, which enhance its hardness, strength, and corrosion resistance. This increased hardness enables the steel to withstand abrasion, friction, and impact, making it highly durable and resistant to wear and tear. Additionally, special steel undergoes specialized heat treatments and mechanical processes that further enhance its toughness and resistance to deformation, contributing to its ability to withstand harsh and demanding conditions without significant deterioration.
Q:What are the heat treatment processes used for special steel?
There are several heat treatment processes used for special steel, including annealing, normalizing, quenching, tempering, and precipitation hardening. These processes are designed to enhance the strength, hardness, toughness, and ductility of the steel, depending on the specific requirements of the application.
Q:What are the different types of corrosion that special steel can encounter?
Special steel has the potential to encounter a variety of corrosion types, including: 1. Uniform corrosion: This is the prevailing form of corrosion, where the steel's entire surface corrodes uniformly. It typically occurs when the steel is exposed to aggressive environments, such as corrosive chemicals or high levels of humidity. 2. Pitting corrosion: Pitting corrosion manifests as localized corrosion attack in the form of small pits or cavities on the steel's surface. It can arise from chloride ions or other aggressive substances and can be particularly damaging as it can lead to crack formation. 3. Crevice corrosion: Crevice corrosion arises within narrow gaps or crevices between steel surfaces, such as junctions, gaskets, or beneath deposits. It is caused by limited oxygen access and the accumulation of corrosive agents, resulting in localized corrosion and potential damage. 4. Galvanic corrosion: Galvanic corrosion arises when two dissimilar metals come into contact within an electrolyte. In special steel, this can occur when it comes into contact with another metal in a corrosive environment, resulting in accelerated corrosion of the less noble metal. 5. Stress corrosion cracking: This type of corrosion ensues due to the combined effects of tensile stress and a corrosive environment. It can cause the steel to crack and fail, even under relatively low stress levels. Special steel is often prone to stress corrosion cracking in specific environments, such as high chloride or acidic solutions. 6. Intergranular corrosion: Intergranular corrosion manifests along the grain boundaries of steel, typically due to the segregation of impurities during the steel's manufacturing process. It can weaken the material and lead to premature failure. To prevent or reduce the occurrence of these corrosion types, special steel can undergo treatment with various corrosion-resistant coatings, such as paints, metallic coatings, or alloys with high corrosion resistance. Moreover, proper material selection, design considerations, and regular maintenance can also aid in minimizing the risk of corrosion in special steel applications.
Q:What are the properties of boron steel?
Boron steel, also known as boron-alloyed steel, possesses several key properties. It is renowned for its exceptional strength, hardness, and wear resistance. Boron steel exhibits excellent heat treatment response, allowing for improved mechanical properties such as increased hardness and tensile strength. Moreover, it offers good weldability and formability, making it suitable for various fabrication processes. Additionally, boron steel demonstrates high fatigue strength, enabling it to withstand repetitive loading without failure. Overall, these properties make boron steel a valuable material for applications requiring high strength and durability, such as automotive components and construction equipment.
Q:How is corrosion-resistant steel different from regular steel?
Corrosion-resistant steel, also known as stainless steel, differs from regular steel primarily due to the presence of chromium. Regular steel is prone to rust and corrosion when exposed to moisture and oxygen, while corrosion-resistant steel contains a minimum of 10.5% chromium, which forms a protective layer on its surface, preventing rust and corrosion. This additional element makes corrosion-resistant steel highly durable, long-lasting, and suitable for various applications where exposure to moisture or corrosive environments is a concern.
Q:What are the cutting tools used for machining special steel?
The cutting tools commonly used for machining special steel include carbide inserts, high-speed steel (HSS) drills and end mills, ceramic inserts, and diamond-coated tools. These tools are designed to withstand the high temperatures and hardness of special steel, ensuring precise and efficient cutting.
Q:What are the different forms of special steel?
There are several different forms of special steel, including stainless steel, tool steel, high-speed steel, alloy steel, and spring steel. Each form has unique properties and is designed for specific applications in various industries.

1. Manufacturer Overview

Location
Year Established
Annual Output Value
Main Markets
Company Certifications

2. Manufacturer Certificates

a) Certification Name  
Range  
Reference  
Validity Period  

3. Manufacturer Capability

a)Trade Capacity  
Nearest Port
Export Percentage
No.of Employees in Trade Department
Language Spoken:
b)Factory Information  
Factory Size:
No. of Production Lines
Contract Manufacturing
Product Price Range

Send your message to us

This is not what you are looking for? Post Buying Request

Similar products

Hot products


Hot Searches

Related keywords